Переходим к «актуально бесконечному среднему». О нем молчат не только современная математика и философия математики, молчит не только Кантор, этот тип бесконечности не существует для позитивистской 13
мысли в целом. Совсем не таково отношение к актуальной бесконечности в традиции Платона, Плотина и Прокла. И, надо добавить, Лосева. Мы избавлены здесь от необходимости цитировать античных авторов, ибо лосевская точка зрения, что называется, представительна. А сводится она категорически к одному: актуально бесконечна любая (любая: «большая», «средняя», «малая») категория, с которой имеет дело человеческая мысль. Тогда излюбленные для Лосева примеры «на пальцах», в которых фигурируют самые обыкновенные числа натурального ряда и простейшие геометрические точки, отправляют нас как бы к эпицентру умопостигаемого бытия – и здесь смыкаются все масштабы. Всякая, читаем, «единица является не чем иным, как бесконечностью», и «всякая точка возможна только в том случае, когда она мыслится на общем и уже внеточечном фоне <…>, она немыслима вне бесконечности», и вообще, категоричен Лосев, само «мышление, устанавливающее хотя бы два каких-нибудь различных момента (а без процесса различения мышление вообще невозможно), осуществимо лишь как непрерывное пользование принципом бесконечности» 14. Об актуальной бесконечности, данной «средствамиОбратимся с этой целью к давней работе Лосева «Критика платонизма у Аристотеля», а через ее посредничество – к двум заключительным книгам «Метафизики». Здесь актуальная бесконечность рассматривается сквозь призму отношений идеального и чувственного, а классическая проблема «предела» и «беспредельного» специфицируется вопросом о соотношении «идеи» и «числа» или, точнее, о соотношении «идеальных» чисел и чисел «арифметических», о возможности либо невозможности их совместного полагания. Главный упрек Платоновой философии со стороны Аристотеля хорошо известен – это упрек в противоречии. Аристотель утверждает:
«следует, по-видимому, считать невозможным, чтобы отдельно друг от друга существовали сущность и то, сущность чего она есть; как могут поэтому идеи, если они сущности вещей, существовать отдельно от них?» (
Отвечая за Платона, Лосев находит данное противоречие, неразрешимое для формалистики Аристотеля, вполне диалектически снимаемым так, что «идеальное» число одновременно и присутствует в «арифметическом» числе, и существует вне его самостоятельно 17
. Как нам представляется, проводимое антиномико-синтетическое единение «числа» и «идеи числа» удобно описать с использованием особого признака, введенного еще Аристотелем. Признак этот – «счислимость» или «счетность», здесь это синонимы. У Лосева для него находится развернутое пояснение, важное и для наших целей: