The experiments had been the logical conclusion to the work Galiana had initiated in her earliest days in the Martian labs. She had set out to enhance the human brain, believing that her work could only be for the greater good of humanity. As her model, Galiana used the development of the digital computer from its simple, slow infancy. Her first step had been to increase the computational power and speed of the human mind, just as the early computer engineers had traded clockwork for electromechanical switches; switches for valves; valves for transistors; transistors for microscopic solid-state devices; solid-state devices for quantum-level processing gates which hovered on the fuzzy edge of the Heisenberg uncertainty principle. She invaded the brains of her subjects, including herself, with tiny machines that laid down connections between brain cells which exactly paralleled those already in place, but which were capable of transmitting nerve signals much more rapidly. With the normal neurotransmitter and nerve-signal events inhibited by drugs or more machines, Galiana’s secondary loom took over neural processing. The subjective effect was normal consciousness, but at an accelerated rate. It was as if the brain had been supercharged, able to process thoughts at a rate ten or fifteen times faster than an unaugmented mind. There were problems, enough to ensure that accelerated consciousness could not usually be sustained for more than a few seconds, but in most respects the experiments had been successful. Someone in the accelerated state could watch an apple fall from a table and compose a commemorative haiku before it reached the ground. They could watch the depressor and elevator muscles flex and twist in a hummingbird’s wing, or marvel at the crownlike impact pattern caused by a splashing drop of milk. They also, needless to say, made excellent soldiers.
So Galiana had moved on to the next phase. The early computer engineers had discovered that certain classes of problem were best tackled by armies of computers locked together in parallel, sharing data between nodes. Galiana pursued this aim with her neurally enhanced subjects, establishing data-corridors between their minds. She allowed them to share memories, experiences, even the processing of certain mental tasks such as pattern recognition.
It was this experiment running amok — jumping uncontrolled from mind to mind, subverting neural machines which were already in place — that led to the event known as the Transenlightenment and, not inconsequentially, to the first war against the Conjoiners. The Coalition for Neural Purity had wiped out Galiana’s allies, forcing her back into the seclusion of a small fortified huddle of labs tucked inside the Great Wall of Mars.
It was there, in 2190, that she had met Clavain for the first time, when he had been her prisoner. It was there that Felka had been born, a few years later. And it was there that Galiana pushed on to the third phase of her experimentation. Still following the model of the early computer engineers, she now wished to explore what could be gained from a quantum-mechanical approach.
The computer engineers in the late twentieth and early twenty-first centuries — barely out of the clockwork era, as far as Galiana was concerned — had used quantum principles to crack problems that would otherwise have been insoluble, such as the task of finding the prime factors of very large numbers. A conventional computer, even an army of conventional computers sharing the task, stood no chance of being able to find the prime factors before the effective end of the universe. And yet with the right equipment — an ungainly lash-up of prisms, lenses, lasers and optical processors on a lab bench — it was possible to do it in a few milliseconds.
There had been fierce debate as to exactly what was happening, but not that the primes