Из факта наблюдения признака
не следует достоверное заключение о выборе стратегии. Следует лишь возможность реализации распознаваемой стратегии S, поскольку множество истинности признака а шире, чем множество истинности необходимого и достаточного признака у. Однако, из факта ложности признака (наблюдается a) следует, что стратегия S не будет реализована. Действительно, это следует из закона логики (S -> а) -> (а -> S). Из факта отсутствия признака не следует, что стратегия S не будет реализована, поскольку множество истинности достаточного признака уже, чем множество истинности признака .Для игры
2x2, описанной выше, из изложенного следует: 1) если необходимый и достаточный признак для S, то есть необходимый и достаточный признак для; 2) если а необходимый признак для S, то a есть достаточный признак для S; 3) Если достаточный признак для S, то есть необходимый признак для S.Пусть игра, описанная выше, такова что, игрок A для распознавания стратегий противника использует разные признаки: для В
1 использует некоторый признак 1, а признак 2 – для стратегии В2. Допустим, что данные признаки приводят к успешному распознаванию с одинаковой вероятностью . Использование признаков увеличивает математическое ожидание выигрыша, если вероятность > 0.5.Если в игре
2x2: 1) игрок A для распознавания стратегии В1 использует только необходимый признак а1; 2) достаточный признак 2 реализуется в разных ситуациях с вероятностью ; 3) вместе признаки дают необходимый и достаточный признак; 4) для распознавания стратегии В2 используется признак 1. Тогда: 1) если игрок B использует равновесную стратегию, то математическое ожидание A выигрыша игрока A равно , в этом случае вероятность выигрыша игрока A больше равновесного при любом ; 2) для любых смешанных стратегий игрока B имеет место A [; 1], и величина A больше равновесного выигрыша при > 1/2. Следовательно, использование необходимого признака дает выигрыш больший, чем равновесный выигрыш 0.5 при > 0.5 для любых стратегий (у1; у2).Если игроку A известны оба необходимых признака: 1
– для стратегии В1 и признак 1 для В2 (11 = 0), то он делает безошибочный прогноз при любом выборе противника.При распознавании стратегии противника,
игрок может обнаружить несоответствие между признаком, установленным ранее, и признаком, наблюдаемым в данный момент. Это может быть обусловлено следующими причинами: ошибками распознавания; управляющим воздействием противника, который демонстрирует противоположные значения некоторых элементарных признаков; неполнотой признака, если признак достаточный.Устранить эту неопределенность, методами математической логики можно лишь при привлечении рефлексивных соображений [5], базирующихся на знании данной предметной области и(или) психологическом портрете противника.
Большое значение в принятии решения, основанном на использования признаков, дает уверенность в достоверности используемых признаков.
Пусть признак K в результате n разыгрываний данной игры приводил к правильному распознаванию стратегии. Насколько можно быть уверенным в том, что в текущем разыгрывании данный признак приведет к успешному распознаванию. Другими словами, не является ли это игрой случая. Перед нами задача математической статистики, в которой нулевая гипотеза утверждает, что мы имеем дело со схемой независимых испытаний и наблюдаемые результаты носят случайный характер. Альтернативная гипотеза заключается в том, что из истинности данного признака K всегда следует правильное заключение. Определим достоверность признака как нижнюю границу вероятности того, что в следующем разыгрывании игры вероятность успешного распознавания выше, чем вероятность ошибки. Заметим, что достоверность характеризует следование: K S, а не сам признак. Данная оценка вероятности равна:. Для утверждения, носящего рефлексивный характер и вводимого в рассмотрение впервые, достоверность естественно положить равной 0.5. Если рассматривается цепочка таких рефлексивных следований длины p
, то ее достоверность равна 0.5p. Это, в частности, относится к рефлексивным рассуждениям, основанным на определении ранга рефлексии в конечных играх [4]. Однако, если ранг рефлексии установлен в результате длительных наблюдений за противником, то его значение также является признаком, который позволяет сделать правильный выбор. Все это говорит о необходимости включения рефлексивных рассуждений в теорию игр.Литература1. Карюкин В. В., Чаусов Ф. С.
Ретроспективный рефлексивный логический анализ Нормандской десантной операции(6 июня 1944 г.). «Рефлексивные процессы и управление», 2017, в печати.2. Карюкин В. В., Чаусов Ф. С.
Математическая модель распознавания ранга рефлексии в ситуациях противодействия противнику. «Математическое моделирование», в печати.3. Чаусов Ф. С.
Рефлексивный подход в управленческой деятельности. – СПб.: СПбВМИ, 2008, 286 с.