Читаем Реникса (второе издание) (с илл.) полностью

Для наблюдателя в вагоне время, которое затратит свет на то, чтобы добраться как до передней двери, так и до задней, равно 9 секундам (разделите 2700000 на 300000). Для наблюдателя на платформе скорость света та же самая. Но задняя дверь идет навстречу лучу. С ней свет встретится через 5 секунд (разделите те же 2700000 на сумму скоростей света и вагона). Напротив, луч догоняет переднюю дверь и доберется до нее через 45 секунд (делим ту же длину на разность скоростей света и вагона). Итак, передняя дверь откроется на 40 секунд позже задней.

Результат кажется поразительным. И все же он строгое следствие опытных фактов. Может быть, кто-либо из физиков до Эйнштейна приходил к такому выводу, но отворачивался от него, считая более вероятным посомневаться в опытах Майкельсона, нежели согласиться с выводом, противоречащим вере (именно вере, а не знанию) в абсолютность времени.

Эйнштейн преподнес естествоиспытателям первый урок правильного обращения с суждениями о мире. Утверждения имеют смысл лишь тогда, когда они сами или их следствия могут быть в принципе подвергнуты опытной проверке. Утверждение, что между событиями прошло столько-то секунд, может быть проверено не вообще, а лишь при указании расположения и движения наблюдателя.

Итак, строго говоря, сказать «прошло пять секунд» — значит ничего не сказать. Чтобы фраза была осмысленной, надо добавить: «…с точки зрения такого-то наблюдателя». Но все же с утверждениями о промежутках времени дело обстоит не совсем так, как с недоговоренными фразами (вроде: «Дерево видно под углом 30 градусов»), с которых мы начали этот раздел.

Недоговоренные фразы, в которых забыта относительность пространства (то есть необходимость указания, от какого места и в каком направлении отсчитываются расстояния), не несут никакой информации и полностью бесполезны.

Что же касается фразы «прошло пять секунд», то в житейской практике она имеет полный смысл. Ведь относительность промежутка времени мы способны заметить лишь в том случае, когда речь идет о явлениях, протекающих по отношению к наблюдателю со скоростями, близкими к скорости света.

Хотя время относительно, как и пространство, но при малых скоростях предположение об абсолютности времени никак не противоречит опыту.

Отсюда мораль: в утверждении об абсолютности времени заключена солидная доля истины. Лишь для быстрых движений начинает ощущаться ошибочность этого простого положения.

Мы уже повторяли много раз, что последующее развитие науки не отменяет закона природы, а может лишь ограничить область его применения. Если эти модели и гипотезы хорошо объясняют некий класс явлений, то нельзя безжалостно списывать их со счетов тогда, когда они окажутся беспомощными в описании более широкого класса явлений. Не следует шельмовать их обидными словами и тем более не стоит обвинять их авторов в глупости и ошибках. Раз модель явления приносит пользу при описании действительности, значит она содержит в себе элемент истины, то есть она, иными словами, в какой-то степени отражает мир.

Теория относительности ярким образом проиллюстрировала относительность истины и заблуждения. За этим первым уроком вскоре последовал и второй. Материалом для него послужила физика атома.

Картина строения атома была нарисована в первой четверти нашего века. В центре атома находится крошечное ядро. Около ядра движутся электроны. В каком-то смысле атом напоминает планетную систему. Физики иллюстрировали свои статьи наглядными рисунками, на которых ядра и электроны фигурировали в виде круглых телец. Зрительным образом электрона или ядра служила твердая горошинка.

Много особенностей в поведении вещества объясняла такая нехитрая модель. Ясно, что она содержала в себе долю истины. Но только долю, и, как оказалось позже, небольшую.

Представление об электронах как о горошинках было таким простым, таким ясным и наглядным, к нему так быстро привыкали, что нокаут, нанесенный этой модели открытием дифракции электронов, воспринялся очень болезненно.

Сейчас та ситуация в какой-то степени кажется странной. Сменой вех в понимании времени физики должны были быть подготовлены к необходимости сопрягать слова и дела. Описывать любое явление они должны были таким образом, чтобы их утверждения могли быть проверены на опыте в принципе, а значит, не должны были описывать детали в строении атома, будто атом ничем в принципе не отличается от сложного механизма, состоящего из рычагов и шарикоподшипников. А они это сделали. И в этом их просчет.

Конструктор может описать форму, размеры, вес, цвет и прочие свойства каждой детали своего детища. Но ведь заранее ясно, что полностью такая программа невыполнима для атома.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука