Итак, одно из правил в использовании вероятностных суждений о случайных событиях – это забыть о прошлой истории.
Теперь другое. Сама по себе малая вероятность события еще не означает, что вы не будете с ними сталкиваться. Всё зависит от того, насколько часто в вашей жизни бывают случаи, при которых это событие может возникнуть.
Случайные совпадения иногда кажутся совершенно поразительными. Если вы их увидели своими глазами, значит, так и есть. А если о невероятном случае рассказывает очевидец? Верить или нет?
Есть вполне разумный способ отличить правду от выдумки. Надо сказать, что интуитивная оценка возможности того или иного случая, которая развита у каждого разумного человека жизненной практикой, хорошо совпадает с простыми подсчетами вероятностей.
Положим, в автомобильной гонке за грузовиками вы обгоняете подряд десять машин, номера которых оканчиваются одной и той же цифрой. Даже не зная, что такое вероятность, вы ощутите, что вряд ли это случайно. Скорее всего движется колонна машин из одного гаража, которому зачем-то выдали номера с одинаковой последней цифрой.
Или еще. У вас свидание с девушкой на площади Пушкина в семь часов вечера. Девушки пока нет, но мимо, для вас некстати, проходит сокурсник. «Привет, Володя, – слышите вы. – Ты что здесь делаешь?»
Досадный случай. Но что это! Появляется второй приятель. Но теперь уже вы задаете вопрос: «Вы что тут, ребята, прохаживаетесь?»
А сами думаете: «Что за черт, совершенно невероятный случай!»
Но тут вдалеке показывается фигура еще одного приятеля.
Мысль о случайности у вас исчезает. «Разыграли, гады» – решаете вы. И если друзья будут клясться и божиться, что никакого сговора не было, и о вашем свидании никто и представления не имел, и что это просто случай – мол, мало ли чего на свете не бывает, – то вы сумеете вывести их на чистую воду с помощью простой арифметики.
Пусть в городе миллион жителей, а друзей у вас десять человек. Вероятность того, что случайный прохожий окажется вашим другом, равна одной стотысячной. Хотя эта цифра и мала, она не исключает возможности случайной встречи.
За полчаса ожидания мимо вас пройдет, скажем, тысяча человек (для площади Пушкина в Москве такая оценка для семи часов вечера совершенно реальная). Вероятность встречи с другом повышается уже до одной сотой.
Сотня свиданий за время обучения в университете у вас уж, наверное, была. Значит, вероятность досадной встречи становится равной единице.
Эта прикидка показывает, что неприятный случай отнюдь не фантастичен.
А какова вероятность встречи одновременно с двумя приятелями? Вероятность этого сложного события равняется одной стотысячной.
Дальнейшее рассуждение остается тем же самым, и оказывается, что вероятность «тройного столкновения» станет равной единице лишь при увеличении срока университетского обучения (с сохранением частоты свиданий) до четырех-пяти сотен тысяч лет.
Итак, уже тройное столкновение является чудом, не говоря уже о четверном. Вы подверглись розыгрышу и можете считать, что привели этому абсолютно строгое доказательство.
Я хотел показать, что о реальности случая надо судить не только по вероятности единичного события, но оценивать полное число событий, которое могло произойти за жизнь человека, за время существования цивилизации, за время существования земного шара…
В игорном доме в Монте-Карло идет игра на красное и черное. Вероятность появления красного равна одной второй, появления этого цвета два раза подряд – одной четвёртой, три раза подряд – одной восьмой… пятнадцать раз подряд – единице, деленной на 32 768. Как не трудно догадаться, это число есть два в пятнадцатой степени (215).
Я не был в Монте-Карло и совсем не знаю «технологии» игры. Но допустим, что одна игра занимает минут пять (пока поставят деньги, пока банк расплатится с выигравшими и загребет деньги проигравших). За час двенадцать игр, за пять часов – совершенно произвольно посчитаем, что для напряженной работы крупье рабочий день такой продолжительности вполне достаточен – шестьдесят. Казино, – наверное, работает без выходных. Значит, за год 21 900 игр. Получается, что появление пятнадцать раз подряд красного цвета – событие реальное. Оно в среднем будет происходить раз в два года.
Так что можете поверить очевидцу, который рассказывает вам драматическую историю об игре графа Сен-Жермена или герцога Сен-Потена, которые пятнадцать раз не снимали своей ставки с красного цвета, выиграли несметные деньги и разорили армию игроков.