Читаем Реникса полностью

Итак, одно из правил в использовании вероятностных суждений о случайных событиях – это забыть о прошлой истории.

Теперь другое. Сама по себе малая вероятность события еще не означает, что вы не будете с ними сталкиваться. Всё зависит от того, насколько часто в вашей жизни бывают случаи, при которых это событие может возникнуть.

Случайные совпадения иногда кажутся совершенно поразительными. Если вы их увидели своими глазами, значит, так и есть. А если о невероятном случае рассказывает очевидец? Верить или нет?

Есть вполне разумный способ отличить правду от выдумки. Надо сказать, что интуитивная оценка возможности того или иного случая, которая развита у каждого разумного человека жизненной практикой, хорошо совпадает с простыми подсчетами вероятностей.

Положим, в автомобильной гонке за грузовиками вы обгоняете подряд десять машин, номера которых оканчиваются одной и той же цифрой. Даже не зная, что такое вероятность, вы ощутите, что вряд ли это случайно. Скорее всего движется колонна машин из одного гаража, которому зачем-то выдали номера с одинаковой последней цифрой.

Или еще. У вас свидание с девушкой на площади Пушкина в семь часов вечера. Девушки пока нет, но мимо, для вас некстати, проходит сокурсник. «Привет, Володя, – слышите вы. – Ты что здесь делаешь?»

Досадный случай. Но что это! Появляется второй приятель. Но теперь уже вы задаете вопрос: «Вы что тут, ребята, прохаживаетесь?»

А сами думаете: «Что за черт, совершенно невероятный случай!»

Но тут вдалеке показывается фигура еще одного приятеля.

Мысль о случайности у вас исчезает. «Разыграли, гады» – решаете вы. И если друзья будут клясться и божиться, что никакого сговора не было, и о вашем свидании никто и представления не имел, и что это просто случай – мол, мало ли чего на свете не бывает, – то вы сумеете вывести их на чистую воду с помощью простой арифметики.

Пусть в городе миллион жителей, а друзей у вас десять человек. Вероятность того, что случайный прохожий окажется вашим другом, равна одной стотысячной. Хотя эта цифра и мала, она не исключает возможности случайной встречи.

За полчаса ожидания мимо вас пройдет, скажем, тысяча человек (для площади Пушкина в Москве такая оценка для семи часов вечера совершенно реальная). Вероятность встречи с другом повышается уже до одной сотой.

Сотня свиданий за время обучения в университете у вас уж, наверное, была. Значит, вероятность досадной встречи становится равной единице.

Эта прикидка показывает, что неприятный случай отнюдь не фантастичен.

А какова вероятность встречи одновременно с двумя приятелями? Вероятность этого сложного события равняется одной стотысячной.

Дальнейшее рассуждение остается тем же самым, и оказывается, что вероятность «тройного столкновения» станет равной единице лишь при увеличении срока университетского обучения (с сохранением частоты свиданий) до четырех-пяти сотен тысяч лет.

Итак, уже тройное столкновение является чудом, не говоря уже о четверном. Вы подверглись розыгрышу и можете считать, что привели этому абсолютно строгое доказательство.

Я хотел показать, что о реальности случая надо судить не только по вероятности единичного события, но оценивать полное число событий, которое могло произойти за жизнь человека, за время существования цивилизации, за время существования земного шара…

В игорном доме в Монте-Карло идет игра на красное и черное. Вероятность появления красного равна одной второй, появления этого цвета два раза подряд – одной четвёртой, три раза подряд – одной восьмой… пятнадцать раз подряд – единице, деленной на 32 768. Как не трудно догадаться, это число есть два в пятнадцатой степени (215).

Я не был в Монте-Карло и совсем не знаю «технологии» игры. Но допустим, что одна игра занимает минут пять (пока поставят деньги, пока банк расплатится с выигравшими и загребет деньги проигравших). За час двенадцать игр, за пять часов – совершенно произвольно посчитаем, что для напряженной работы крупье рабочий день такой продолжительности вполне достаточен – шестьдесят. Казино, – наверное, работает без выходных. Значит, за год 21 900 игр. Получается, что появление пятнадцать раз подряд красного цвета – событие реальное. Оно в среднем будет происходить раз в два года.

Так что можете поверить очевидцу, который рассказывает вам драматическую историю об игре графа Сен-Жермена или герцога Сен-Потена, которые пятнадцать раз не снимали своей ставки с красного цвета, выиграли несметные деньги и разорили армию игроков.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука