Читаем Репортаж из XXI века полностью

Какими же причинами можно объяснить ускоренное движение Фобоса? Этому вопросу посвящено несколько работ в зарубежной научной литературе. Выдвигались две возможные причины такого торможения. Во-первых, сопротивление окружающей спутник среды — та же причина, что вызывает торможение искусственных спутников Земли. Однако расчеты, которые были произведены видным американским астрономом Уиплом совместно с Керром, не подтвердили этого предположения. Ведь для этого надо было принять плотность этой среды на высоте в 6 тысяч километров равной 3х10-16 граммов на кубический сантиметр. Если эта среда — межпланетное вещество (которое в окрестностях Марса, вообще говоря, может иметь большую плотность, чем около Земли), то непонятно, почему она не тормозит более удаленный Деймос. Но может быть, это марсианская атмосфера? Земная атмосфера имеет такую плотность на высоте около 750 километров. Несмотря на меньшую силу притяжения Марса, его атмосфера, однако, не может иметь такой значительной плотности на высоте 6 тысяч километров. Произведя соответствующие расчеты, я убедился, что в этом случае она рассеялась бы всего за несколько десятков миллионов лет.

Второй возможной причиной ускорения движения Фобоса могут быть приливы. Так как на Марсе отсутствуют значительные свободные водоемы, надо учитывать только приливы в твердой оболочке этой планеты. Известный английский астроном Джефрис, крупнейший специалист по приливам, недавно проверил точными методами математики и эту гипотезу. По его расчетам, приливы в твердой оболочке Марса могут объяснить лишь одну десятитысячную часть наблюдаемого ускорения Фобоса. Правда, при этом Джефрис сделал предположение, что упругие и вязкие свойства Марса таковы же, как у Земли.

Но, может быть, Марс имеет совершенно отличную от Земли упругость, вязкость, структуру? Расчет Джефриса, основанный на недостаточно мотивированном предположении, неубедителен. Однако расчеты, которые мы провели в последнее время, показали, что, если принять за причину торможения Фобоса влияние приливов, надо признать, что он существует не более 500 миллионов лет. Это именно то время, за которое он должен бы был опуститься с предельно удаленной возможной для него орбиты до его сегодняшнего положения. Ибо если бы его начальная орбита оказалась больше этой предельно возможной, влияние приливного трения не приближало бы его к Марсу, а, наоборот, удаляло. Так удаляет влияние земных приливов нашу Луну. Для Марса эта предельная орбита находится на расстоянии около 20 тысяч километров. Деймос находится дальше нее и поэтому под влиянием приливного трения никогда не сможет приблизиться к Марсу.

Но полученное время жизни Фобоса — 500 миллионов лет — недопустимо мало по сравнению со временем жизни Марса — около 5 миллиардов лет. 500 миллионов лет тому назад на Марсе условия не могли значительно отличаться от современных. Такой сложный процесс, как образование спутников с почти круговыми орбитами, расположенными в плоскости экватора планеты, мог иметь место только в отдаленную эпоху формирования Марса из «допланетного облака» или немного спустя, когда Марс был совсем «молод» и условия там были резко отличны от современных. Поэтому мы можем сделать вывод, что приливы не являются причиной наблюдаемого ускорения Фобоса. Таковы те причины аномалий движения Фобоса, которые рассматривались на страницах научной печати. Однако возможны и другие причины. Я попытался найти и рассмотреть их все.

Конечно, нельзя не допустить возможности существования вокруг Марса мощного магнитного поля. Безусловно, из чего бы ни состоял Фобос, слагающие его вещества обладают той или иной электропроводностью. Возможно, что и весь он обладает тем или иным электрическим зарядом. В этих случаях магнитное поле Марса будет тормозить его движение. Однако проведенные мной математические расчеты отвергли и эту возможность. Наконец, вообще говоря, нельзя исключить, что ускоренное движение Фобоса происходит по законам небесной механики — из-за влияния притяжения Деймоса, Солнца и других планет. Однако все эти причины должны бы (это опять показывают расчеты) сильнее повлиять на движение Деймоса, а не Фобоса. А ведь происходит все наоборот.

Таким образом, я пришел к выводу, что никакими естественными способами невозможно объяснить ни происхождение марсианских «лун», ни странности в движении Фобоса.

Проанализировав и отвергнув все мыслимые причины торможения Фобоса, я пришел к следующему выводу. Вероятно, именно торможение верхних, чрезвычайно разреженных слоев атмосферы играет здесь решающую роль. Но для того, чтобы это торможение оказалось столь значительным — учитывая чрезвычайную разряженность атмосферы Марса на такой высоте, — Фобос должен иметь очень малую массу, а значит, и среднюю плотность, примерно в тысячу раз меньшую плотности воды.

Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки