Читаем Решение дифференциальных уравнений с помощью нейросетей полностью

Решение дифференциальных уравнений с помощью нейросетей

Эта книга – практикум по решению различных типов дифференциальных уравнений. Рассматривается 15 примеров. Новым является применение нейросетей как при написании введения, так и при решении ряда дифференциальных уравнений. Сделаны только первые шаги в этом направлении. Стоит ли идти дальше – зависит от обратной связи с вами, читатель!

Николай Петрович Морозов

Учебная и научная литература / Образование и наука18+
<p>Николай Морозов</p><p>Решение дифференциальных уравнений с помощью нейросетей</p><p>Вступление</p>

Дифференциальным уравнением называется уравнение, содержащее производные неизвестной функции (или нескольких неизвестных функций).Вместо производных могут содержаться дифференциалы.

Если неизвестные функции зависят от одной независимой переменной(одного аргумента), то уравнение называется

обыкновенным дифференциальным уравнением, если от нескольких, то уравнение называется дифференциальным уравнением с частными производными(в частных производных).

Обыкновенное дифференциальное уравнение имеет вид:

F (x,y, y',y'',....,y n ) = 0 (1) ,

где F – некоторая функция от переменной х, функции у(х) и ее производных.

Порядком дифференциального уравнения называется порядок наивысшей из производных, входящих в это уравнение.

Примеры:

xy' = y 2; y' +y = 0; y'' +y' = y/x

Решением дифференциального уравнения называется функция у=f(x),), если при подстановке ее в уравнение, последнее обращается в тождество.

Основной задачей теории дифференциальных уравнений является нахождение всех решений данного дифференциального уравнения. В простейших случаях эта задача сводится к вычислению интеграла.

Поэтому решение дифференциального уравнения часто называют его интегралом, а задача нахождения его решений называется задачей интегрирования дифференциального уравнения.

Дифференциальным уравнением первого порядка называется уравнение вида:

F (x, y,y') = 0 (2)

Дифференциальное уравнение первого порядка содержит:

1) независимую переменную x ;

2) зависимую переменную (функцию) y ;

3) первую производную функции y'.

Важно, чтобы в нем была первая производная , и не было производных высших порядков .

Если уравнение 2 можно разрешить относительно y', то его можно записать в виде:

Похожие книги

1917–1920. Огненные годы Русского Севера
1917–1920. Огненные годы Русского Севера

Книга «1917–1920. Огненные годы Русского Севера» посвящена истории революции и Гражданской войны на Русском Севере, исследованной советскими и большинством современных российских историков несколько односторонне. Автор излагает хронику событий, военных действий, изучает роль английских, американских и французских войск, поведение разных слоев населения: рабочих, крестьян, буржуазии и интеллигенции в период Гражданской войны на Севере; а также весь комплекс российско-финляндских противоречий, имевших большое значение в Гражданской войне на Севере России. В книге используются многочисленные архивные источники, в том числе никогда ранее не изученные материалы архива Министерства иностранных дел Франции. Автор предлагает ответы на вопрос, почему демократические правительства Северной области не смогли осуществить третий путь в Гражданской войне.Эта работа является продолжением книги «Третий путь в Гражданской войне. Демократическая революция 1918 года на Волге» (Санкт-Петербург, 2015).В формате PDF A4 сохранён издательский дизайн.

Леонид Григорьевич Прайсман

История / Учебная и научная литература / Образование и наука
1221. Великий князь Георгий Всеволодович и основание Нижнего Новгорода
1221. Великий князь Георгий Всеволодович и основание Нижнего Новгорода

Правда о самом противоречивом князе Древней Руси.Книга рассказывает о Георгии Всеволодовиче, великом князе Владимирском, правнуке Владимира Мономаха, значительной и весьма противоречивой фигуре отечественной истории. Его политика и геополитика, основание Нижнего Новгорода, княжеские междоусобицы, битва на Липице, столкновение с монгольской агрессией – вся деятельность и судьба князя подвергаются пристрастному анализу. Полемику о Георгии Всеволодовиче можно обнаружить уже в летописях. Для церкви Георгий – святой князь и герой, который «пал за веру и отечество». Однако существует устойчивая критическая традиция, жестко обличающая его деяния. Автор, известный историк и политик Вячеслав Никонов, «без гнева и пристрастия» исследует фигуру Георгия Всеволодовича как крупного самобытного политика в контексте того, чем была Древняя Русь к началу XIII века, какое место занимало в ней Владимиро-Суздальское княжество, и какую роль играл его лидер в общерусских делах.Это увлекательный рассказ об одном из самых неоднозначных правителей Руси. Редко какой персонаж российской истории, за исключением разве что Ивана Грозного, Петра I или Владимира Ленина, удостаивался столь противоречивых оценок.Кем был великий князь Георгий Всеволодович, погибший в 1238 году?– Неудачником, которого обвиняли в поражении русских от монголов?– Святым мучеником за православную веру и за легендарный Китеж-град?– Князем-провидцем, основавшим Нижний Новгород, восточный щит России, город, спасший независимость страны в Смуте 1612 года?На эти и другие вопросы отвечает в своей книге Вячеслав Никонов, известный российский историк и политик. Вячеслав Алексеевич Никонов – первый заместитель председателя комитета Государственной Думы по международным делам, декан факультета государственного управления МГУ, председатель правления фонда "Русский мир", доктор исторических наук.В формате PDF A4 сохранен издательский макет.

Вячеслав Алексеевич Никонов

История / Учебная и научная литература / Образование и наука