Читаем Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики полностью

Аналитика применялась для решения операционных проблем на протяжении многих лет. Так будет продолжаться и дальше, и операционное применение аналитики сохранит свою значимость. Однако операционная аналитика выходит за прежние пределы. В идеале хотелось бы иметь новый термин, который четко бы отделял операционную аналитику от операционного применения традиционной аналитики, но я такового не знаю. Это печально, поскольку сходство определений может привести к путанице, особенно когда они произносятся подряд. На одной из конференций во время обсуждения данной темы один из участников в шутку предложил мне использовать термин «фрэнксова аналитика», что, разумеется, слишком эгоцентрично, тем более если воспринять предложение всерьез. Поэтому я постараюсь сосредоточиться на различиях между двумя подходами, а не на их наименованиях.

Различия между операционным применением аналитики и операционной аналитикой наглядно демонстрируют всю важность и сложность последней. Операционно-аналитические процессы зачастую так же сложны, как любые аналитические процессы, использовавшиеся организацией до сих пор, но вдобавок новые процессы должны быть автоматизированы, существенно масштабированы и осуществляться с молниеносной скоростью. Эти мощные процессы вместе с тем отличаются сложностью и требуют серьезного труда. Давайте рассмотрим несколько примеров, которые помогут прояснить имеющиеся различия.

Одно из важных отличий операционной аналитики состоит в том, что анализ выполняется в автоматическом и интегрированном режиме в пределах так называемого времени принятия решения. Другими словами, анализ выполняется со скоростью, позволяющей принять решение. В некоторых случаях принятие решений происходит в режиме реального времени (или очень близко к тому). В других случаях период ожидания может составлять несколько минут, часов или даже дней. Знать время принятия решения крайне важно для достижения успеха, поскольку аналитический процесс должен быть доступен и выполняться в пределах этого интервала.

Традиционно многие организации подстраивали свои веб-сайты под клиентов через определение их индивидуальных покупательских привычек с дальнейшим размещением соответствующих предложений и адаптацией под потребителей к следующему посещению сайта каждым клиентом. Подобная веб-кастомизация доказала свою эффективность и сегодня используется почти повсеместно. Обработка сведений о клиенте по состоянию на сегодняшний вечер, с тем чтобы завтра утром клиент увидел уже адаптированный под него сайт, – таково операционное применение аналитики. Однако подобная предварительная кастомизация не является примером операционной аналитики. Это всего лишь пример применения традиционной пакетной обработки в операционном окружении.

Операционная аналитика требует кастомизации следующей открываемой клиентом страницы с момента клика по кнопке next до момента открытия страницы. Этот процесс должен использовать не только всю историческую информацию о клиенте, но и новейшую, в том числе о его самых последних действиях на веб-сайте. Адаптацию веб-страницы за короткий промежуток времени между кликами и выполняет операционная аналитика. Обратите внимание: подобный анализ осуществляется не для одного, а для всех клиентов, посещающих сайт, что выливается в миллионы микрорешений, основанных на аналитике. Даже если при навигации по сайту клиенты не замечают разницы между пакетным и операционным подходами, на самом деле разница, пусть и скрытая, существенна.

Применяйте аналитику не только к операциям

Аналитические процессы применялись для решения операционных проблем на протяжении многих лет. Однако операционная аналитика выходит за пределы использования результатов традиционной пакетной аналитики в операционных целях. Операционная аналитика применяется в пределах «времени принятия решений» для каждого индивидуального решения.

Еще один наглядный пример, на котором мы подробнее остановимся далее, относится к производственной области. Показания датчиков двигателей дают возможность производителям разработать оптимальный график технического обслуживания. Наличие детальной информации о функционировании двигателя автомобиля, самолета или любого другого транспортного средства позволяет выявить шаблоны, со временем ведущие к отказу двигателя. Такая разработка более эффективного графика на основе показаний датчиков – это результат операционного применения аналитики.

Перейти на страницу:

Похожие книги

Реклама
Реклама

Что делает рекламу эффективной? Вопрос, который стоит и перед практиками, и перед теоретиками, и перед студентами, вынесен во главу угла седьмого издания прославленной «Рекламы» У. Уэллса, С. Мориарти и Дж. Бернетта.Книга поможет разобраться в правилах планирования, создания и оценки рекламы в современных условиях. В ней рассматриваются все аспекты рекламного бизнеса, от объяснения роли рекламы в обществе до конкретных рекомендаций по ведению рекламных кампаний в различных отраслях, описания стратегий рекламы, анализа влияния рекламы на маркетинг, поведения потребителей, и многое другое. Вы познакомитесь с лучшими в мире рекламными кампаниями, узнаете об их целях и лежащих в их основе креативных идеях. Вы узнаете, как разрабатывались и реализовывались идеи, как принимались важные решения и с какими рисками сталкивались создатели лучших рекламных решений. Авторы изучили реальные документы, касающиеся планирования описанных в книге рекламных кампаний, разговаривали с людьми, занимавшимися их разработкой. Сделано это с одной целью: научить читателя тем принципам и практикам, что стоят за успешным продвижением.Книга будет безусловно полезна студентам вузов, слушателям программ МВА, а равно и рекламистам-практикам. «Реклама: принципы и практика» – это книга, которую следует прочитать, чтобы узнать все об эффективной рекламе.7-е издание.

Джон Бернетт , Дмитрий Сергеевич Зверев , Сандра Мориарти , Светлана Александровна , Уильям Уэллс

Фантастика / Деловая литература / Юмор / Фантастика: прочее / Прочий юмор