Читаем Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики полностью

Чтобы ответить на этот вопрос, важно понимать разницу между технологией как симптомом и технологией как причиной. В конце 2012 г. на ежегодной конференции, организованной моей компанией, у меня состоялся разговор с сотрудником крупного клиента. Этот человек входил в команду, занимавшуюся сетями и инфраструктурой, – сфера, с которой я редко сталкиваюсь по роду своей деятельности. Несмотря на то что наши миры редко пересекались, нам обоим было интересно поговорить друг с другом. Но когда разговор зашел о проблемах его компании, он не согласился с моим мнением о том, что дело вовсе не в технологиях.

Собеседник сказал, что понял меня, но при этом отметил, что в его компании использовались устаревшие сетевые протоколы. Корпоративная сеть попросту не справлялась с новыми объемами больших данных и новыми аналитическими требованиями. Сеть задыхалась, и ее поддержание в рабочем состоянии стало для него ежедневным кошмаром. Он поинтересовался, считаю ли я, что и в данном случае технология не является главной проблемой.

Симптом или причина?

Распространенным симптомом проблем, связанных с фундаментальным процессом или политикой, является влияние этих проблем на сопряженные с ними технологии. Во многих случаях проблема кроется вовсе не в технологиях. Вы должны различать, в каких случаях технология действительно является причиной проблем, а в каких – всего лишь симптомом скрытой проблемы.

Тогда я спросил у собеседника, почему бы не внедрить в его компании продвинутые сетевые продукты, способные успешно обрабатывать потоки данных и удовлетворять аналитические потребности, с которыми не справлялась существующая сеть. Он признал такую возможность, но сказал, что не может модернизировать сеть, потому что ему не выделяют необходимого финансирования. Тем самым он только подтвердил мою точку зрения. Позвольте мне объясниться.

В этой конкретной ситуации технология не была главной проблемой, ведь необходимые технологические решения доступны на рынке. Проблема же заключалась в том, что команде моего собеседника никак не удавалось убедить руководство компании в необходимости внедрения этой технологии. Команда не могла добиться одобрения своего бизнес-кейса и выделения бюджета, потому что не была отмобилизована на реализацию проекта. Таким образом, хотя технологии были источником постоянной головной боли для его команды, но не они являлись главным источником проблем.

То же самое верно и при внедрении организациями операционной аналитики. В некоторых случаях будет казаться, что именно технология создает барьеры. В таких ситуациях я рекомендую вам посмотреть на ситуацию со стороны – действительно ли технология является причиной, а не симптомом проблем?

Компоненты будут добавляться, а не заменяться

Распространено заблуждение насчет того, что новые аналитические технологии полностью заменят проверенные временем технологии. Разумеется, это не так. В действительности по мере расширения потребностей в аналитике и развития имеющихся технологий компании будут добавлять новые компоненты в аналитическое окружение, а не заменять старые на новые.

Пожалуй, наиболее широко распространено ошибочное мнение о том, что Hadoop (или более широкий класс нереляционных инструментов, к которым принадлежит Hadoop) постепенно заменяет окружение реляционных баз данных. Hadoop – это проект с открытым исходным кодом, позволяющий разбивать крупные файлы на части и обрабатывать их параллельно. (Далее в этой главе мы рассмотрим технологию Hadoop подробнее.) В действительности же Hadoop наращивает реляционное окружение, и им обоим найдется место в аналитических структурах современных организаций.

Такая путаница проистекает главным образом из того факта, что сегодня практически 100 % компаний уже используют реляционную технологию. Соответственно по рынку гуляет множество историй о том, как компании «переходят на Hadoop». Однако выражение «переходят на Hadoop» неверно. Правильнее будет говорить, что компании «добавляют Hadoop». При ближайшем рассмотрении практически во всех случаях мы видим, что Hadoop добавляется к существующему окружению, но никак не все окружение мигрирует на Hadoop.

Путаница усугубляется тем фактом, что обратный сценарий встречается крайне редко. Крайне мало организаций используют только Hadoop без реляционного окружения, и эти редкие исключения сосредоточены в основном в Кремниевой долине. Таким образом, нечасто можно услышать о том, что пользователь Hadoop «переходит на реляционную модель» или «добавляет реляционную модель» к своему окружению.

Перейти на страницу:

Похожие книги

Реклама
Реклама

Что делает рекламу эффективной? Вопрос, который стоит и перед практиками, и перед теоретиками, и перед студентами, вынесен во главу угла седьмого издания прославленной «Рекламы» У. Уэллса, С. Мориарти и Дж. Бернетта.Книга поможет разобраться в правилах планирования, создания и оценки рекламы в современных условиях. В ней рассматриваются все аспекты рекламного бизнеса, от объяснения роли рекламы в обществе до конкретных рекомендаций по ведению рекламных кампаний в различных отраслях, описания стратегий рекламы, анализа влияния рекламы на маркетинг, поведения потребителей, и многое другое. Вы познакомитесь с лучшими в мире рекламными кампаниями, узнаете об их целях и лежащих в их основе креативных идеях. Вы узнаете, как разрабатывались и реализовывались идеи, как принимались важные решения и с какими рисками сталкивались создатели лучших рекламных решений. Авторы изучили реальные документы, касающиеся планирования описанных в книге рекламных кампаний, разговаривали с людьми, занимавшимися их разработкой. Сделано это с одной целью: научить читателя тем принципам и практикам, что стоят за успешным продвижением.Книга будет безусловно полезна студентам вузов, слушателям программ МВА, а равно и рекламистам-практикам. «Реклама: принципы и практика» – это книга, которую следует прочитать, чтобы узнать все об эффективной рекламе.7-е издание.

Джон Бернетт , Дмитрий Сергеевич Зверев , Сандра Мориарти , Светлана Александровна , Уильям Уэллс

Фантастика / Деловая литература / Юмор / Фантастика: прочее / Прочий юмор
Лягушка, слон и брокколи. Как жить и как не надо
Лягушка, слон и брокколи. Как жить и как не надо

Для правильных решений надо освоить три метода: как съесть слона, как сожрать лягушку и когда следует есть брокколи. Про слона и лягушку вы наверняка слышали: слона надо есть медленно и по кусочкам, а лягушку – глотать первым делом, с утра. Идея с брокколи не так известна, но концепция такая: брокколи полезна для долголетия. Но для того, чтобы дольше жить, мало это знать. Надо её ещё и регулярно есть.Почему сила воли работает плохо и зачем избегать тупости? Какие дела стоит сделать прямо сейчас, а какие лучше выкинуть из жизни? Чем привычки лучше целей? Как сделать что-то новое и интересное, не бросив все в самом начале? Как научиться чему угодно и войти в число лучших? Что такое осознанная практика и почему 10 тысяч часов может не хватить?Алексей Марков, кандидат экономических наук, автор знаменитой «Хулиномики», рок-звезда и отец четверых детей учит людей думать в своей привычной манере: точно, жёстко, с циничными шутками и очень лёгким языком.

Алексей Викторович Марков

Деловая литература / Самосовершенствование / Прочая научная литература / Эзотерика / Образование и наука