Теперь, наконец, мы можем рассказать о замечательной квантовой теории 'атома, которая была развита Бором в 1913 г. В это время физики склонялись к планетарной модели атома. Согласно этой модели атом состоит из находящегося в центре тяжелого положительно заряженного ядра, в котором сосредоточена почти вся масса атома и электронов-планет, вращающихся вокруг ядра. Справедливость этой модели, предложенной впервые Перреном, была подтверждена опытами Резерфорда, который показал, что внутри атома действительно находится ядро, обладающее положительным зарядом и чрезвычайно малыми размерами. К сожалению, однако, эта планетарная модель находилась в противоречии с выводами классической электродинамики, касающимися излучения ускоренно движущихся заряженных частиц. Действительно, эксперимент показывал, что спектры излучения атомов состоят из почти монохроматических линий, соответствующих некоторым неизменным частотам. Отсюда согласно классической физике с неизбежностью следовало, что в нормальном состоянии электроны, входящие в состав атома, должны быть неподвижны и находиться в состоянии устойчивого равновесия.
Выведенный воздействием каких-либо внешних причин из состояния равновесия, электрон начинает колебаться около положения равновесия, излучая при этом электромагнитную волну вполне определенной частоты. Постепенно, по мере того как его кинетическая энергия будет переходить в энергию излучения, амплитуда колебаний электрона будет уменьшаться, пока в конце концов не обратится в нуль, и электрон не вернется снова в исходное положение равновесия. Таким образом, можно было бы одновременно объяснить и наличие в спектре монохроматических линий и устойчивость атомной системы. Но планетарная модель атома не допускала такого объяснения, так как в этой модели предполагали, что электроны вращаются, подобно планетам, по кеплеровым орбитам вокруг центрального ядра и имеют частоту обращения, зависящую от их кинетической энергии и изменяющуюся вместе с ней. Поэтому если классическая теория излучения применима к внутриатомным электронам, то электроны-планеты должны постепенно терять энергию, излучая волны непрерывно меняющейся частоты, и в конце концов упасть на ядро и нейтрализовать его. Таким образом, в рамках классической теории планетарная модель не позволяла объяснить ни монохроматический характер спектральных линий, ни устойчивость атомной системы. Таковы были трудности, с которыми столкнуться Нильс Бор в начале своих исследований.
Громадная заслуга Бора состоит именно в том, что он ясно понял, что нужно сохранить планетарную модель атома, введя в нее фундаментальные идеи квантовой теории. В соответствии с этой теорией среди бесконечного множества всевозможных движений, допускаемых классической механикой, только некоторые квантованные движения оказываются устойчивыми и обычно осуществляются в природе. Для систем, совершающих одномерное периодическое движение, это условие квантования было введено Планком. Обобщение же этого условия на случай периодического движения, определяемого более чем одним параметром, к тому времени, когда Бор написал свои первые работы, еще не было известно. Бор предположил, что движение атомных систем должно быть квантованным, т е. должно подчиняться некоторым условиям или, как иногда говорят, правилам квантования. Следовательно, каждый атом должен обладать некоторой последовательностью квантованных, или стационарных состояний. Если атом изолирован и образует замкнутую систему, то каждое из этих стационарных состояний характеризуется некоторым квантованным значением энергии. Таким образом, каждый вид атома характеризуется последовательностью квантованных значений энергии, соответствующих возможным различным стационарным состояниям. Иначе говоря, атому каждого элемента соответствует последовательность чисел, определяющих энергию различных состояний, в которых этот атом может находиться.
Придя к этому моменту в рассуждении, легко видеть, что полученная картина обнаруживает замечательную аналогию с существованием спектральных термов, вытекающим из комбинационного принципа. Чтобы получить квантовую интерпретацию спектральных термов и закона Ритца, достаточно лишь предположить, что частоты, соответствующие различным спектральным линиям атома, всегда пропорциональны разности двух квантованных значений его энергии, отвечающих разным стационарным состояниям. Бор прекрасно видел, что это последнее предположение совершенно естественно в квантовой теории атома. Действительно, так как различные квантовые состояния атома устойчивы, то ни в одном из этих состояний атом не должен излучать. Вывод, очевидно, прямо противоположный выводу классической электродинамики, согласно которой электроны-планеты, движущиеся с ускорением, должны были бы непрерывно излучать электромагнитные волны.