Вооружившись своим волновым уравнением, Шредингер приступил к строгому решению задачи определения стационарных состояний квантовой системы, предположив в соответствии с приближенной теорией, что эти стационарные состояния соответствуют связанным с частицами стационарным волнам. Рассмотрим в качестве квантовой системы атом водорода. Мы знаем уравнение распространения волн, соответствующих этой системе. Естественно предположить, что, так как система ограничена некоторой областью пространства, «КСИ»-функция при удалении от центра системы быстро стремится к нулю. Если мы также предположим, как это обычно делают в математической физике, что «КСИ»-функция должна быть везде однозначна и непрерывна, то нахождение стационарных состояний сводится к отысканию монохроматических решений уравнения распространения, конечных и однозначных во всем пространстве и обращающихся в нуль на бесконечности. Шредингер, использовав известные методы анализа, блестяще решил эту задачу для нескольких типов квантовых систем. Он обнаружил, что монохроматические решения, удовлетворяющие наложенным условиям, существуют лишь для некоторых определенных значений частоты. Эти значения являются собственными значениями волнового уравнения в частных производных данной задачи с граничным условием обращения «КСИ» в нуль на бесконечности. Собственной частоте системы в соответствии с общим соотношением между свойствами волны и характеристиками частицы сопоставляется квантованное значение энергии частицы, которое получается умножением частоты на
Любопытное совпадение натолкнуло Шредингера на мысль, которая привела его к самым замечательным открытиям. Незадолго до этого Гейзенберг сформулировал свою квантовую механику. Его новый метод, внешне совершенно отличный от волновой механики, дал точно такие же результаты для квантованных значений энергии атомных систем, что и метод Шредингера, тем самым подтвердив и уточнив результаты старой квантовой теории. Шредингер интуитивно чувствовал, что это совпадение не случайно. Ему мастерски удалось показать, что квантовая механика Гейзенберга, несмотря на совершенно иной внешний вид представляет собой всего лишь математическую перефразировку волновой механики.
Важность эффекта Зеемана и его электрического аналога, эффекта Штарка, хорошо известна. Шредингер попытался с помощью волновой механики развить теорию этих явлений. С этой целью он разработал прекрасный метод возмущений, волновой вариант классического метода небесной механики. Действительно, магнитные и электрические поля, которые мы можем создавать, ничтожно малы по сравнению с электромагнитными полями, действующими внутри атомных систем. Чтобы получить эффект Зеемана или Штарка, на атомы воздействуют однородным магнитным или электрическим полем, и это поле можно рассматривать как очень малое возмущение собственного поля атомной системы. Если нам уже известны квантованные значения энергии данной системы в отсутствие внешнего поля, то необходимо лишь учесть очень слабое изменение этих величин, которое вызывается возмущающим полем.