Читаем Революция в физике полностью

Совсем иначе обстоит дело в волновой механике. Здесь мы должны наглядно представить себе, как распространяется волна, связанная с частицей. Можно показать, что до тех пор, пока высота потенциального барьера меньше энергии частицы, для такой волны этот барьер является аналогом преломляющей среды. Если энергия частицы больше, чем значение потенциала на вершине, то она легко переходит с одной стороны на другую. С этой точки зрения нет никакой разницы между старой и новой теориями. Однако если энергия частицы ниже, чем высота потенциального барьера, то избыточная часть высоты барьера играет для волн роль поглощающей среды. Но согласно волновой теории при падении на поглощающую среду волна все же через нее проходит, правда в сильно ослабленном виде. Это затухание волны таково, что если толщина поглощающей среды достаточно мала, то некоторая часть волны, в действительности очень малая, может просочиться сквозь эту поглощающую среду. Этот факт бесспорно подтвержден в оптике. Переходя к нашей задаче волновой механики, мы видим, что частица, энергия которой слишком мала, чтобы перевалить через вершину потенциального барьера, может пройти через него, если его ширина не слишком велика. Точнее говоря, частица, отскакивающая от потенциального барьера, если ее энергии недостаточна, чтобы перевалить через вершину, имеет, однако, определенную вероятность (конечно, очень малую, но не равную нулю) появиться с другой стороны барьера. Это следует из вероятностей трактовки, связанной с частицей волны, и принципа интерференции. Описанное явление – следствие волновой природы материи часто образно называют туннельным эффектом.

Допустим теперь, что частица заключена в пространстве, со всех сторон ограниченном потенциальными барьерами, высота которых больше ее энергии. Классическая механика утверждает, что частица никогда не сможет вырваться из этой потенциальной ямы. Согласно же волновой механике частица, наоборот, имеет вполне определенную, небольшую вероятность покинуть яму. Волновая механика позволяет вычислить вероятность выхода за единицу времени.

Теперь посмотрим, как Гамов (и почти одновременно с ним Кондон и Гарни) применил эту теорию к изучению задачи радиоактивного распада. Известно, что большое число радиоактивных веществ распадается с испусканием «альфа»-частиц. Можно предположить, что «альфа»-частицы еще до распада заключены в ядрах радиоактивных атомов как в потенциальной яме. Поскольку закон Кулона действует вблизи ядра вплоть до самых близких расстояний от него, вид внешнего склона потенциальной горы известен. Весьма вероятно, что потенциал на определенном расстоянии от ядра в конце концов перестает быть кулоновским: потенциал должен пройти через максимум и затем упасть, однако закон изменения внутреннего склона барьера совершенно неизвестен. Величайшее удивление вызывал у физиков такой факт: энергия «альфа»-частиц, выходящих из распадающихся ядер, была, по-видимому, гораздо ниже той, которая позволила бы им перевалить через окружающий ядро потенциальный барьер. Действительно, можно достаточно далеко исследовать внешний склон потенциального барьера, чтобы обнаружить, что вершина его заведомо превосходит некоторую определенную высоту. Вылетающие же из ядра «альфа»-частицы не обладают энергией, достаточной, чтобы достичь этой высоты. Если исходить из классических представлений, то мы попадаем в тупик. А вот туннельный эффект сразу все объясняет. Заключенные в радиоактивном ядре «альфа»-частицы находятся в потенциальной яме с очень высокими стенками. Тем не менее они имеют определенную вероятность за единицу времени выскочить наружу. Эта вероятность, очевидно, равна постоянной распада радиоактивного вещества. Итак, волновая механика позволяет при условии, если мы точно знаем форму потенциального барьера, вычислить постоянные «альфа»-распада радиоактивных веществ. Сделав разумные предположения о форме этих барьеров, Гамов показал, что результаты теории очень близки к наблюдаемым.

Одним из важнейших успехов теории Гамова явилось объяснение закона Гейгера – Неттола, согласно которому скорость вылетающих «альфа»-частиц для элементов с малым периодом полураспада больше, чем для долгоживущих. Этот закон математически выражается соотношением между постоянной распада и энергией «альфа»-частиц, испущенных при распаде, соотношением, из которого следует, что постоянная распада очень сильно зависит от энергии «альфа»-частиц.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже