Микроволновое фоновое излучение — это тепловое излучение, схожее с тем, которое испускают нагретые тела. Макс Планк изучал характеристики теплового излучения большую часть своей жизни; если быть более точными, то основной темой его исследований стала проблема, известная нам как излучение черного тела. В 1900 году физики-экспериментаторы с большой точностью измерили, как менялась интенсивность излучения нагретого тела в зависимости от температуры и длины волны. Одним из них был Генрих Рубенс, который лично сообщил Планку 7 октября, что последние измерения отклонялись от ранее предложенных формул. Вероятно, именно в этот день Планк обнаружил математическую формулу, точно описывавшую результаты эксперимента. Эта формула, известная как закон излучения Планка, смогла объяснить все экспериментальные результаты, полученные с тех пор. Четко соответствует ей и микроволновое фоновое излучение.
Открытие Планка стало возможным не только потому, что в распоряжении ученого оказались необходимые данные, но и потому, что он обладал мудростью, способностями и вдохновением. Искомые данные попали к нему первому, поскольку Планка окружали выдающиеся физики той эпохи. При этом он глубоко знал проблему, был знаком с последними научными достижениями, связанными с ней, и, что немаловажно, обладал прекрасной математической подготовкой. Мы упомянули и вдохновение, ведь только благодаря ему ученый записал свою формулу не как неопровержимое доказательство, не как неизбежное следствие первоначальных данных, а для того, чтобы проверить, возможно ли воспроизвести эксперименты, немного изменив имеющийся закон. Так что его открытие было эмпирическим.
Получив формулу, Планк захотел дать ей физическое объяснение, найти ее связь с исходными данными. Для этого он использовал передовые достижения физики своего времени: электродинамику Максвелла и Герца, с одной стороны, и второй закон термодинамики и понятие энтропии — с другой. Также он учел вероятностную интерпретацию понятия энтропии, выдвинутую за несколько лет до этого австрийским ученым Людвигом Больцманом. Наконец, Планк довольно неожиданно, что не без оснований можно назвать гигантским шагом вперед, предложил гипотезу, названную квантовой. Согласно этой гипотезе, механическая энергия осциллятора (например, тела на пружине) не может быть равна произвольной величине, ее значение ограничивается множеством элементарных величин — квантов. Квант энергии Е пропорционален частоте V, с которой колеблется осциллятор:
E = hv.
Постоянная А, определяющая коэффициент пропорциональности между энергией и частотой, известна как постоянная Планка. Вероятно, буква h была выбрана Планком от немецкого слова Hilfe, означающего «помощь».
Расцвет квантовой гипотезы произошел через четверть века, хотя Планк выдвинул ее для решения конкретной задачи — ad hoc — и не придавал ей особого значения, а некоторые физики в начале XX века заявляли, что гипотеза Планка не соответствует классическому подходу Альберт Эйнштейн в своей блестящей статье, написанной в 1905 году, придал квантовой гипотезе гораздо более глубокое значение, чем сам Планк, заявивший: испускание и поглощение света происходит порциями энергии, равными hv.
И если введение Планком гипотезы ставило под сомнение классическую физику, то интерпретация Эйнштейна вступала с известной наукой в открытое противоречие. В XIX веке не подвергалось сомнениям, что свет — это волна. Предположение Эйнштейна подразумевало, что при определенных процессах свет обладает корпускулярными свойствами. Результаты экспериментов американского физика Роберта Милликена, исследовавшего фотоэлектрический эффект, в 1915 году точь- в-точь повторили предсказания Эйнштейна в статье 1905 года. Нужно подчеркнуть, что когда Милликен начал экспериментальные исследования фотоэлектрического эффекта, он стремился опровергнуть корпускулярную гипотезу Эйнштейна, но после нескольких лет упорной работы вынужден был заявить научной общественности о справедливости его теории для фотоэлектрического эффекта. То есть свет оставался волной, но при этом состоял из частиц. В 1913 году Нильс Бор применил квантовую теорию для создания модели атома водорода. Атом Бора объяснял экспериментальные результаты, связанные с испусканием и поглощением света материей,— спектры атомов. С этого момента атомная физика опиралась на фундаментальную формулу Е = hv, применяемую в разных обстоятельствах. Кульминацией этого процесса стало появление в 1920-х годах нового научного раздела — квантовой механики.
Квантовая механика — это теоретическая область знания, изучающая атомные и ядерные феномены. Эта дисциплина — один из столпов современной физики. Макс Планк не принимал участия в разработке квантовой механики — этим занимались более молодые физики: Гейзенберг, Шрёдингер, Дирак,