17. Фундаментальной закономерностью механики времени как всеобщей истории числа является теорема Ферма—Эйлера о представлении простых чисел в виде суммы двух квадратов. Условием возможности математического анализа как имманентной теории числа является физическая (численностная) реальность того, что квадраты некоторых чисел можно разложить в сумму двух квадратов. Можно описать все целочисленные решения уравнения х2 + у2 = z2. Это было сделано Диофантом, греческим математиком, жившим (вероятно) в III веке нашей эры, во второй книге его трактата «Арифметика». На полях около решения Диофанта Ферма написал: «Нельзя разложить куб на два куба, ни квадрато-квадрат (т. е. четвертую степень числа) на два квадрато-квадрата, ни вообще никакую степень выше квадрата и до бесконечности нельзя разложить на две степени с тем же показателем. Я открыл этому поистине чудесное доказательство, но эти поля для него слишком узки»24. Иначе говоря, уравнение хn + уn = zn при натуральном n>2 в целых числах неразрешимо. В бумагах Ферма было найдено доказательство этого утверждения для n=4. Для n=3 теорему Ферма доказал Эйлер в 1768 году. Математики не заметили, не обращая внимание на физическое существование числа, что вторая теорема Ферма, которая гласит: «Для того чтобы нечетное простое число было представимо в виде суммы двух квадратов, необходимо и достаточно, чтобы оно при делении на 4 давало в остатке 1», может служить доказательством Великой теоремы при наличии одного априорного положения, о котором будет сказано ниже. Ферма приоткрывает замысел доказательства в целом, когда пишет: «Основная идея доказательства состоит в методе спуска, позволяющем из предположения, что для какого-то простого числа вида 4n+1 заключение теоремы неверно, получить, что оно неверно и для меньшего числа того же и т. д., пока мы не доберемся до числа 5, когда окончательно придем к противоречию»25. «Удивительная суть» всеобщего доказательства Ферма состоит в открытии того априорного положения, для выражения которого ему категорически не могло хватить математического языка, но с избытком хватило видения, — априорного положения о физическом (истинном) существе единицы, о необходимости и достаточности формулы единицы как всеобщей формулы математики, формулы всеобщей теории чисел.
18. Единица есть множество простых чисел.
Физическая реальность единицы доказывается существованием математических констант: «-1» представляет арифметику, i (мнимая единица) — алгебру, — геометрию и e (неперово число) — анализ.
Язык науки есть модель единицы, которая, в свою очередь, есть модель языка в чистом виде. «-1» представляет грамматику, i — синтаксис, — семантику и e — семиотику. Так называемый искусственный интеллект имеет формулу единицы — формализует смысл, образуя лексический уровень языка из исчисления языковых моделей. Вместе с тем, формула единицы есть истинный смысл, который кроется за метафорой «всеобщая теория поля», неполным формализмом всеобщей теории числа. Взаимодействие в пространстве числового ряда не нуждается в существовании особого (нечислового) «физического агента», «переносящего» взаимодействие.
19. Высшая творческая радость Архимеда состояла в открытии физической природы единицы: «Объем шара радиуса 1 равен 4/3». Королевская теорема математиков: «правильный семнадцатиугольник может быть построен с помощью циркуля и линейки» — должна быть дополнена единицей: правильный восемнадцатиугольник может быть построен с помощью циркуля и линейки. Данное построение является основанием формализации ленты Мёбиуса и отсылает нас к проблеме квадратуры круга.
20. Математикам известно, что теорема Ферма—Эйлера «красиво доказывается», если использовать теорию делимости целых комплексных чисел n+mi, n, m — целые. Это исток современного этапа развития квантовой механики, работы с «мнимыми объектами».
21. Принцип формализации есть принцип «дополнительности единицы» (тождественный принципу включенного третьего как принципу отглагольной связки «есть»), есть также принцип соответствия цифры числу — и выступает руководящим принципом преобразования квантовой механики в механику времени. Принцип единицы вносит определенность в квантово-механическую ситуацию неопределенности, что делает возможным получение экспериментальных данных об одних физических величинах, описывающих микрообъект, «избегающее неизбежности» изменения таких данных о величинах, дополнительных к первым. Так «взаимно дополнительные» величины (координата и импульс частицы) дополняет число частицы как определенность соотношения. Дефиниция есть фундаментальная процедура механики времени, обеспечивающая переход от имманентного исчисления (математического анализа) к трансцендентальному исчислению (синтетическому исчислению) на основе представления о трансцендентном исчислении.