«П Р Е Д С Т А В И М, что количество простых чисел конечно. (ПРЕДСТАВИМ себе их ВСЕ). Перемножим (ВСЕ, ПРЕДСТАВЛЕННЫЕ конечным набором простые числа) и прибавим (к ВООБРАЖАЕМОМУ результату) единицу. Полученное число не делится ни на одно из (ПРЕДСТАВЛЕННОГО) конечного набора простых чисел, потому что остаток от деления на любое из них даёт единицу. Значит, полученное число должно делиться на некоторое простое число, не включённое в этот (ПРЕДСТАВЛЕННЫЙ) набор (например, хотя бы на самое себя, если ни на одно другое число оно не делится)».
Внимание! А теперь финальный вывод:
Следовательно, то простое число, на которое должно делиться полученное число, не входит в ранее ПРЕДСТАВЛЕННЫЙ набор ВСЕХ простых чисел. Следовательно, ПРЕДСТАВИТЬ ВСЕ простые числа одним набором НЕЛЬЗЯ! И ВСЁ. Конец вывода.
В откорректированном рассуждении, в отличие от оригинала, я опровергаю не утверждение о конечности множества простых чисел, а мнение о возможности П Р Е Д С Т А В И Т Ь такое множество конечным, о КОРРЕКТНОСТИ такого представления. Согласитесь, что разница в выводах действительно ПРИНЦИПИАЛЬНА!
Этим ИЛЛЮСТРИРУЕТСЯ ВОЗМОЖНОСТЬ ПАРАДИГМЫ МЫШЛЕНИЯ — той, к которой призывает Сергей Шилов, критикуя сложившуюся парадигму, в которой: «Доказательство… на деле есть [ЛИШЬ] спекулятивная связь представления, находящегося в “начале” “доказательства” как некоторой техники мышления, с представлением, находящимся в “конце” такого “доказательства”, — это показ (самопоказ) представления, в котором представление самоутверждается, демонстрирует себя как истинное. Дело доказательства как дело поиска истины в таком самопоказе представления предано забвению».
Михаил М., Вы пишите: «бесконечность числа простых чисел легко доказывается и в обычной, и в конструктивной математике». Если Вы учились у самого Маркова, ДОКАЖИТЕ бесконечность числа простых чисел в логике конструктивистской математики, т. е. не пользуясь методом «от противного», в основе которого лежит «закон исключенного третьего»!!!
EEV:
В.Н. Левин, Вы использовали лишнюю сущность, а именно понятие «набор», даже не потрудившись ее определить. Поэтому вывод некорректен.
С. Шилов:
Материал для продолжения дискуссии.
Оракул числа, или Риторическая теория числа как Божья помощь математикам
Когда бог считает, он создает мир
Лейбниц
Математики до сих пор не сделали необходимых выводов из провала гильбертовской программы формализации. Еще в первой половине прошлого века матлогик Фреге писал, что суть проблем Гильберта сводится к определению числа. Забавляет уверенность, с которой матлогики и поныне создают конструкции и дают определения, в то время как собственно основа их оперирования — логика — давно ушла у них из-под ног. «Перончик тронется, вагон останется». Провал гильбертовской программы произошел по той причине, что это была программа ЛОГИЧЕСКАЯ. Дело в том, что, ориентируясь на логику, математикам следовало бы поинтересоваться, что же происходит собственно в сфере логики. Вся история мышления Нового времени от Декарта является по меньшей мере фундаментальным преобразованием аристотелевой логики. И суть, результат этого преобразования до сих пор не зафиксированы академически. Декарт в своем методе указал на основание, которое предшествует (параллельно) логике, не нуждается в логике. Гегель построил Науку логики, одновременно бессознательно отфиксировав ее кантовские ограничения как критики чистого разума. Гегель предпочел признать прусскую монархию венцом истории, нежели сделать окончательный вывод о том, что НАУКА ЛОГИКИ ЛОГИКОЙ УЖЕ НЕ ЯВЛЯЕТСЯ (ЧТО НАУКА ЛОГИКИ НЕВОЗМОЖНА!), вывод, который неявно и был движущей силой спекулятивного гегелевского письма. Хайдеггер сделал интересное замечание: на деле история мышления Нового времени есть «выдвижение в ничто». Т. е. весь историко-мыслительный цикл Нового времени мышление переходило с основания логики на иное основание, при этом попадая в ситуацию, когда уход с основания логики завершился, а новое основание не было надежно отрефлектировано. Дело аристотелевой (греческой) рациональности уже не могли (и не могут) спасти всякого рода «воображаемые логики» (термин русского логика Васильева), экспериментирующие с отказом от тех или иных логических законов. Новое время деконструирует сам принцип логики. В философии, завершающей западноевропейскую метафизику, философии Дерриды, принцип логики — «логоцентризм» — отторгается самой телесностью (реальной «практикой» текстовой работы) мышления, отпадает как некоторая «корка с глаз».
Путь от Науки логики Гегеля до Науки Риторики — это и есть путь нового основания. Основание (нелогическое, дологическое, сверхлогическое), обнаруженное Декартом в начале Истории мышления Нового времени, раскрывается в Науке Риторике как число, раскрывается с помощью риторической теории числа.