Переход к строительству энергоблоков ВВЭР-1000 потребовал организации крупномасштабных научно-исследовательских работ по созданию принципиально новых конструктивно-технологических решений основных зданий и сооружений комплекса АЭС. Такие исследования были развернуты ведущими проектно-исследовательскими институтами Минэнерго СССР: Оргэнергостроем, Гидропроектом, ВНИИГ. В первую очередь разрабатывались решения наиболее ответственных и специфичных объектов АЭС – реакторного отделения и спецкорпуса.
При разработке конструкции защитной оболочки учитывалась необходимость перехода к серийному возведению таких оболочек индустриальными методами строительства. Сооружение таких оболочек на АЭС качественно улучшило и придало дополнительную пластику в решении архитектурного облика АЭС. Увеличение единичной мощности и применение улучшенных, оригинальных компоновочных и технических решений в проекте АЭС с ВВЭР-1000 по сравнению с блоками АЭС с ВВЭР-440 позволили обеспечить (в удельном исчислении): уменьшение объемов зданий производственного назначения на 30 %; снижение трудозатрат на возведение основных сооружений на 10–13 %; сокращение расходов нержавеющей стали при изготовлении строительных конструкций на 30 %, а также бетона и железобетона на 8 %.
Для головных энергоблоков с реакторами ВВЭР-1000 институтом «Оргэнергострой» была разработана защитная оболочка реакторного отделения с геликоидальным расположением напрягаемых арматурных канатов, на которую выдано авторское свидетельство об изобретении. Расчетное усилие предварительного напряжения каждого арматурного элемента составляет 10 тыс. кН. Эта оболочка была использована и для унифицированных энергоблоков с реакторами ВВЭР-1000, примененных в проектах энергоблоков 5 и 6 АЭС «Козлодуй» (НРБ) и АЭС «Темелин» (ЧССР).
Для обоснования расчетной базы были проведены крупномасштабные исследования по определению коэффициентов трения арматурных элементов разных типов в условиях, предельно приближенных к натурным, при различных типах канало-образователей и разных смазках. По их результатам впервые в международной практике строительства АЭС были приняты полиэтиленовые каналообразователи, что позволило не только заменить дорогостоящие стальные трубы, но и существенно упростить производство строительных работ.
Была разработана оригинальная конструкция арматурных элементов непрерывной навивки из 450 параллельных высокопрочных проволок, созданы новые конструкции мощных анкерных устройств, разработаны и поставлены на производство гидравлические четырехцилиндровые домкраты, развивающее усилие 10 тыс. кН. Созданы специальные технологические линии для централизованного изготовления арматурных элементов.
Указанные разработки успешно применены на АЭС «Козлодуй» и «Темелин», где арматурные элементы были изготовлены соответственно болгарскими и чешскими организациями. В Чехии было организовано (по проекту института «Оргэнергострой») собственное производство высокопрочных коушей и анкерных устройств.
Совместно с Академией строительства ГДР были проведены многочисленные исследования по созданию так называемых «стальных ячеек» для сложных высоконагруженных конструкций герметичной зоны. Результаты этих исследований были реализованы в проектных решениях как отечественных АЭС, так и для АЭС «Козлодуй», «Стендаль» и «Темелин». Большой вклад в разработку технологии «стальных ячеек» внес Комбинат легких конструкций (ГДР).
Особенности работы спецкорпусов АЭС, связанные с наличием системы боксов и коридоров, обусловили весьма большие объемы работ по возведению стеновых конструкций. Аналогичные проблемы возникали применительно к обстройке аппаратного отделения. Для снижения стоимости и трудоемкости арматурных и опалубочных работ при возведении этих стен институты «Оргэнергострой» и «Атомэнергопроект» предложили заменить монолитный железобетон на сборно-монолитные конструкции. Плоские армированные плиты заводского изготовления объединялись стальными фермами в объемные блоки. В зону стыка смежных блоков устанавливали объемные армокаркасы, после чего внутреннее пространство блоков заполняли монолитным бетоном. Такая технология позволила резко увеличить темпы возведения сооружений, повысить качество поверхности стен, радикально сократив объем отделочных работ.
Для обоснования расчетной схемы работоспособности конструкций из железобетонных ячеек были проведены исследования на моделях, фрагментах и натурных образцах железобетонных ячеек. Исследования подтвердили совместную работу сборной и монолитной частей конструкции. Сейсмостойкость зданий из ячеек изучалась на трехэтажном фрагменте спецкорпуса, изготовленном из натурных конструкций.