Читаем Рождение сложности: Эволюционная биология сегодня полностью

 Согласно законам генетики при скрещивании двух гетерозиготных растений (то есть таких, у которых одна копия гена активна, а вторая нет) четверть потомков должна иметь пурпурные пыльники. Однако этого не происходит, у всех потомков пыльники оказываются светлыми, и в последующих поколениях пурпурная окраска пыльников тоже не появляется. Это происходит потому, что активный ген, побывав в гетерозиготном состоянии с неактивным, меняет свои свойства и переходит в неактивное состояние. В таком неактивном виде он затем передается по наследству. Это и есть парамутация.

 Мы уже знаем, что большую роль в поддержании "переключенного" состояния гена при парамутации играют молекулы РНК, передающиеся от родителей к потомкам. Кроме того, в опытах с кукурузой недавно удалось показать, что для устойчивой передачи парамутации из поколения в поколение необходим фермент, размножающий молекулы РНК (РНК-зависимая РНК-полимераза, см. главу "Происхождение жизни"). И еще было установлено, что многие другие гены тоже участвуют в поддержании устойчивости парамутантного состояния, но в чем конкретно состоит функция этих генов, никто до недавнего времени не знал.

 В отличие от "настоящей" мутации парамутация у кукурузы может сравнительно легко ревертироваться, то есть вернуться в исходное состояние. Например, неактивная версия гена pl1 может превратиться обратно в активную, если произойдут определенные мутации (настоящие, а не "пара-") в других генах.

 У кукурузы удалось выявить 10 генов, мутации в которых могут приводить к возвращению неактивного гена pl1 в активное состояние. Это значит, что нормальная работа этих генов необходима для поддержания парамутантного состояния. Чтобы понять механизм парамутации, очень важно выяснить, что это за гены и что они кодируют. До недавнего времени была известна функция только одного из них — было показано, что он кодирует РНК-зависимую РНК-полимеразу (см. выше).

 В 2007 году американские генетики предприняли очередную попытку разгадать тайну парамутаций у кукурузы. И ответ, казалось, был уже почти у них в руках. Еще бы одно маленькое усилие, и... В общем, история получилась вполне детективная (Christopher J. Hale, Jennifer L. Stonaker, Stephen M. Gross, Jay B. Hollick. A Novel Snf2 Protein Maintains trans-Generational Regulatory States Established by Paramutation in Maize // PLoS Biology. 2007.5(10): e275).

 Исследователи сосредоточили свое внимание на одном из вышеупомянутых десяти генов, необходимых для парамутации. Этот ген называется rmr1, и до сих пор никто понятия не имел, как он работает и что кодирует. Оказалось, что он кодирует не известный ранее белок, похожий по своей структуре на ферменты, управляющие метилированием ДНК. Это позволило предположить, что поддержание "парамутантного" состояния как-то связано с метилированием ДНК. Заодно наметилась и связь с РНК-зависимой РНК-полимеразой, которая тоже нужна для парамутации, как было показано ранее. Дело в том, что РНК-зависимая РНК-полимераза размножает маленькие молекулы РНК, которые тоже участвуют в регуляции метилирования ДНК.

 Итак, можно было ожидать, что парамутация как-то связана с метилированием ДНК в окрестностях гена рl1.

 Ученые обратили внимание на то обстоятельство, что перед началом гена pl1 имеется некодирующий участок ДНК, представляющий собой фрагмент транспозона. Надо сказать, что метилирование ДНК используется в том числе и для инактивации транспозонов.

 Кусочек транспозона, расположенный перед началом гена pl1, как выяснилось, по-разному метилируется у нормальных растений и у мутантов с неработающим геном rmr1 (у первых он метилируется сильнее). Кроме того, при работающем гене rmr1 в клетках растений была выявлена пониженная концентрация молекул РНК, считанных с гена рl1, по сравнению с растениями, у которых ген rmr1 не работал. Скорость транскрипции (считывания) гена pl1, однако, была одинаковой в обоих случаях. Это значит, что от гена rmr1 зависит не скорость считывания, а устойчивость (стабильность) уже считанных с гена рl1 молекул РНК.

 На этом этапе исследователи, казалось, уже вплотную подошли к пониманию механизма парамутации. Разрозненные факты вроде бы начали складываться в цельную картину. Можно было предположить, что "активное" состояние гена рl1 соответствует низкому уровню метилирования фрагмента транспозона перед его началом, а "пассивное" — высокому; что ген rmr1 регулирует уровень метилирования, а уровень метилирования в свою очередь определяет стабильность молекул РНК, считанных с гена рl1 (и тем самым определяет "активность" гена).

 Хотя эту схему трудно назвать простой, дальнейшие эксперименты показали, что в действительности все еще сложнее. Стало ясно, что истинный механизм парамутации иной, и загадка в итоге так и осталась неразгаданной.

Перейти на страницу:

Похожие книги

Логика случая. О природе и происхождении биологической эволюции
Логика случая. О природе и происхождении биологической эволюции

В этой амбициозной книге Евгений Кунин освещает переплетение случайного и закономерного, лежащих в основе самой сути жизни. В попытке достичь более глубокого понимания взаимного влияния случайности и необходимости, двигающих вперед биологическую эволюцию, Кунин сводит воедино новые данные и концепции, намечая при этом дорогу, ведущую за пределы синтетической теории эволюции. Он интерпретирует эволюцию как стохастический процесс, основанный на заранее непредвиденных обстоятельствах, ограниченный необходимостью поддержки клеточной организации и направляемый процессом адаптации. Для поддержки своих выводов он объединяет между собой множество концептуальных идей: сравнительную геномику, проливающую свет на предковые формы; новое понимание шаблонов, способов и непредсказуемости процесса эволюции; достижения в изучении экспрессии генов, распространенности белков и других фенотипических молекулярных характеристик; применение методов статистической физики для изучения генов и геномов и новый взгляд на вероятность самопроизвольного появления жизни, порождаемый современной космологией.Логика случая демонстрирует, что то понимание эволюции, которое было выработано наукой XX века, является устаревшим и неполным, и обрисовывает фундаментально новый подход — вызывающий, иногда противоречивый, но всегда основанный на твердых научных знаниях.

Евгений Викторович Кунин

Биология, биофизика, биохимия / Биология / Образование и наука
Метаэкология
Метаэкология

В этой книге меня интересовало, в первую очередь, подобие различных систем. Я пытался показать, что семиотика, логика, этика, эстетика возникают как системные свойства подобно генетическому коду, половому размножению, разделению экологических ниш. Продолжив аналогии, можно применить экологические критерии биомассы, продуктивности, накопления омертвевшей продукции (мортмассы), разнообразия к метаэкологическим системам. Название «метаэкология» дано авансом, на будущее, когда эти понятия войдут в рутинный анализ состояния души. Ведь смысл экологии и метаэкологии один — в противостоянии смерти. При этом экологические системы развиваются в направлении увеличения биомассы, роста разнообразия, сокращения отходов, и с метаэкологическими происходит то же самое.

Валентин Абрамович Красилов

Культурология / Биология, биофизика, биохимия / Философия / Биология / Образование и наука