До сих пор было известно только то, что у насекомых с мутациями в гене DSCAM нервная система развивается неправильно. Механизм участия DSCAM в индивидуальном развитии был неясен, хотя "общую идею" нетрудно было угадать. Чтобы из делящихся клеток зародыша, которые все имеют одну и ту же заложенную в них "программу поведения" (геном), сформировалась не аморфная клеточная масса, а сложный организм, эти клетки должны знать, в какую сторону им расти или переползать, к кому приклеиваться, а от кого, напротив, отделяться. Для этого им нужно как-то узнавать друг друга, понимать, кто есть кто в их окружении. Такое взаимное узнавание клеток особенно важно в ходе развития нервной системы, чтобы отростки нейронов соединялись друг с другом правильным образом и формировали "правильные" нервные контуры и сети.
Что касается белков иммуноглобулинового надсемейства, то они как раз и специализируются на выполнении задач такого рода, то есть на персональной идентификации и различении "своих" и "чужих". Поэтому можно было предвидеть, что для этих белков найдется работа не только в иммунной системе, но и в других ситуациях, когда нужно разбираться, кто есть кто в клеточном или социальном окружении (О "социальном окружении" я упомянул не случайно. Оказывается, позвоночные животные (а возможно, и не только они) широко используют иммуноглобулиновые белки для персональной идентификации. Например, белки так называемого "главного комплекса гистосовместимости" составляют важнейшую часть индивидуального запаха и, в частности, позволяют животным отличать родню от чужаков. Даже люди не совсем утратили эту способность. Подробности см. по адресу:
http://evolbiol.ru/mate_recognition.htm). Однако, повторю, до недавнего времени никто не знал, каким именно способом белок DSCAM реализует эту функцию в ходе развития нервной системы. В 2004 году у белка DSCAM было обнаружено очередное поразительное свойство (Wojtowicz W. М. et al. Alternative splicing of Drosophila DSCAM generates axon guidance receptors that exhibit isoform-specific homophilic binding
// Cell. 2004. V 118. P. 619-633.). Оказалось, что каждый сплайс-вариант этого белка обладает способностью к так называемому "гомофильному связыванию". Это значит, что молекула данного сплайс-варианта "узнает" другую такую же молекулу и прочно связывается с ней. При этом она никогда не связывается с другими сплайс-вариантами того же белка. Совершеннейшая фантастика, если подумать! Всем известно, что молекулы ДНК и РНК легко "узнают" свои собственные копии и склеиваются с ними на основе принципа комплементарности. Но чтобы подобные свойства обнаружились у белков — в это даже поверить трудно. Тем не менее данный факт подтвержден весьма тщательными экспериментами, проверены сотни сплайс-вариантов. Механизм "гомофильного связывания" активно исследуется, но пока еще до конца не расшифрован. Нетрудно догадаться, что эта удивительная особенность делает DSCAM идеальным молекулярным устройством для различения "своих" и "чужих". Оставалось выяснить, как это устройство используется при развитии нервной системы.
Биологи из Австрии и США в 2007 году получили ответ на этот вопрос при помощи генной инженерии (Daisuke et al. DSCAM diversity is essentialfor neuronal wiring and self-recognition
// Nature. 2007. V 449. E. 223-227.). Они создали три линии генетически модифицированных мух, в каждой из которых ген DSCAM был радикально "упрощен". Из него были вырезаны все альтернативные наборы фрагментов-заготовок, кроме одного-единственного, разного в каждой из трех линий. Модифицированные мухи, таким образом, могли синтезировать только один сплайс-вариант белка DSCAM вместо 38 016.