Читаем Рождение сложности: Эволюционная биология сегодня полностью

 Но рано или поздно преджизнь должна была обзавестись собственными оболочками — перейти от доорганизменного уровня к организменному. Идеальным материалом для таких оболочек являются липиды (жиры), молекулы которых способны образовывать на поверхности воды тончайшие пленки. Если взболтать такую воду, в ее толще образуется множество мелких пузырьков — водяных капелек, покрытых двухслойной липидной оболочкой (мембраной). Эти капельки проявляют интересные свойства, которые делают их похожими на живые клетки. Например, они способны осуществлять обмен веществ. Липидные мембраны обладают избирательной проницаемостью: одни молекулы сквозь них проходят, другие — нет. Благодаря этому одни вещества втягиваются в каплю, другие выводятся, третьи — накапливаются внутри. Правда, для того, чтобы это происходило постоянно, одних мембран недостаточно. Нужно еще, чтобы внутри капли одни вещества превращались в другие, а для этого там должны находиться катализаторы — белки или РНК.

 Изучением свойств водно-липидных капель (коацерватов) занимался академик А. И. Опарин. Он считал, что коацерваты были одним из этапов на пути возникновения жизни. Опарин обнаружил, что при определенных условиях коацерваты могут расти и даже "размножаться" делением (А.И. Опарин Жизнь, ее природа, происхождение, развитие 1968 http://evolbiol.ru/oparin.htm).



Кофермент А — одна из важнейших биоактивных молекул живой клетки — представляет собой модифицированный рибонуклеотид аденозин. К одному из остатков фосфорной кислоты присоединен "хвост", отдаленно напоминающий очень короткую белковую молекулу. Хвост заканчивается группой -SH, которая является активным центром молекулы. К этой сере может присоединяться ацетильная группа (-СО-СН3)у которая затем будет использована, например, для синтеза жирных кислот (ключевой этап синтеза липидов). Строение молекулы кофермента А заставляет задуматься о древнейших этапах эволюции жизни, когда рибонуклеотиды и простейшие белки (пептиды) еще только учились «жить и работать вместе»



 Первые коацерваты могли образоваться самопроизвольно из липидов, синтезированных абиогенным путем. Впоследствии они могли вступить в симбиоз (взаимовыгодное сожительство) с "живыми растворами" — колониями самовоспроизводящихся молекул РНК, среди которых были и рибозимы, катализирующие синтез липидов. Подобное сообщество уже можно назвать организмом. У всех живых существ до сих пор в синтезе липидов важнейшую роль играет кофермент А, представляющий собой не что иное, как модифицированный рибонуклеотид. Это еще одно напоминание об РНК-мире.

 Камнем преткновения для теории РНК-мира в течении некоторого времени была неспособность молекул РНК эффективно взаимодействовать с липидными мембранами. Недавно, однако, было показано, что комплексы из нескольких разных молекул РНК и ионов кальция способны не только прикрепляться к мембранам, но и регулировать их проницаемость.

РНК обзаводится помощниками

 В дальнейшем РНК-организмы приобрели несколько важных усовершенствований. Самое главное из них состояло в том, что они научились синтезировать аминокислотные полимеры — сначала короткие пептиды, а затем и длинные белки. Эти вещества стали для РНК-организмов универсальными помощниками, справляющимися с большинством биологических "работ" гораздо лучше, чем рибозимы.

 Откуда же взялась у РНК-организмов способность синтезировать белки? Чтобы ответить на этот вопрос, мы должны поближе познакомиться с рибосомами — сложными молекулярными "машинками", при помощи которых синтезируют белки все современные живые клетки.

 Рибосомы у всех живых существ — от бактерий до человека — устроены очень похоже. По-видимому, это означает, что рибосомы в их "современном" виде имелись уже у общего предка всех нынешних форм жизни — у Луки, о котором говорилось в начале главы. Рибосома состоит из двух частей, или субъединиц, — большой (главной) и малой (вспомогательной). Основу обеих субъединиц составляют молекулы рибосомной РНК (рРНК). Снаружи к молекулам рРНК прилегают молекулы рибосомных белков. Поскольку рибосомы играют главную роль в синтезе белка (трансляции), вопрос о происхождении синтеза белка фактически сводится к вопросу о происхождении рибосом.

Перейти на страницу:

Похожие книги

Логика случая. О природе и происхождении биологической эволюции
Логика случая. О природе и происхождении биологической эволюции

В этой амбициозной книге Евгений Кунин освещает переплетение случайного и закономерного, лежащих в основе самой сути жизни. В попытке достичь более глубокого понимания взаимного влияния случайности и необходимости, двигающих вперед биологическую эволюцию, Кунин сводит воедино новые данные и концепции, намечая при этом дорогу, ведущую за пределы синтетической теории эволюции. Он интерпретирует эволюцию как стохастический процесс, основанный на заранее непредвиденных обстоятельствах, ограниченный необходимостью поддержки клеточной организации и направляемый процессом адаптации. Для поддержки своих выводов он объединяет между собой множество концептуальных идей: сравнительную геномику, проливающую свет на предковые формы; новое понимание шаблонов, способов и непредсказуемости процесса эволюции; достижения в изучении экспрессии генов, распространенности белков и других фенотипических молекулярных характеристик; применение методов статистической физики для изучения генов и геномов и новый взгляд на вероятность самопроизвольного появления жизни, порождаемый современной космологией.Логика случая демонстрирует, что то понимание эволюции, которое было выработано наукой XX века, является устаревшим и неполным, и обрисовывает фундаментально новый подход — вызывающий, иногда противоречивый, но всегда основанный на твердых научных знаниях.

Евгений Викторович Кунин

Биология, биофизика, биохимия / Биология / Образование и наука
Метаэкология
Метаэкология

В этой книге меня интересовало, в первую очередь, подобие различных систем. Я пытался показать, что семиотика, логика, этика, эстетика возникают как системные свойства подобно генетическому коду, половому размножению, разделению экологических ниш. Продолжив аналогии, можно применить экологические критерии биомассы, продуктивности, накопления омертвевшей продукции (мортмассы), разнообразия к метаэкологическим системам. Название «метаэкология» дано авансом, на будущее, когда эти понятия войдут в рутинный анализ состояния души. Ведь смысл экологии и метаэкологии один — в противостоянии смерти. При этом экологические системы развиваются в направлении увеличения биомассы, роста разнообразия, сокращения отходов, и с метаэкологическими происходит то же самое.

Валентин Абрамович Красилов

Культурология / Биология, биофизика, биохимия / Философия / Биология / Образование и наука