Читаем Рождение сложности: Эволюционная биология сегодня полностью

 Дополнительные эксперименты показали, что влияние света на рост бактерий зависит от концентрации растворенной органики. Конечно, протеородопсины в отличие от систем настоящего фотосинтеза не могут сделать бактерию полностью автотрофной, то есть не нуждающейся в готовых органических веществах. Такие бактерии лишь "подкармливаются" светом и без готовой органики существовать не могут. Dokdonia практически не растет в воде с содержанием органики ниже определенного порога, и свет нисколько не помогает ей в этой ситуации. Однако при более высоких концентрациях растворенного органического вещества бактерия растет на свету в несколько раз быстрее, чем в темноте. Если же поместить докдонию в воду с избытком органики, то свет снова перестает влиять на ее рост (в этих условиях она растет одинаково хорошо как на свету, так и в темноте).

 Таким образом, протеородопсины повышают жизнеспособность морских бактерий лишь в условиях низких (но не слишком низких) концентраций растворенной органики. Возможно, отрицательные результаты, полученные ранее с Pelagibacter, объясняются именно нерациональным количеством органики в опытных средах.

 Так или иначе, мы теперь знаем, что многочисленные и разнообразные морские микробы, имеющие в своем геноме гены протеородопсинов, действительно могут быть факультативными фототрофами, то есть способны разнообразить свою диету, состоящую в основном из растворенной органики, солнечным светом.

(Источники: 1. Laura Gomez-Consarnau et al. Light stimulates growth of proteorhodopsincontaining marine Flavobacteria // Nature. 2007. V. 445. P. 210-213;

2. Gazalah Sabehi et al. New insights into Metabolic Properties of Marine Bacteria Encoding Proteorhodopsins // PLoS Biol. 2005.3(8): е273.)


 Изобретение аноксигенного фотосинтеза было большим шагом вперед. Живые существа, овладевшие секретом фотосинтеза, получили доступ к неисчерпаемому источнику энергии — солнечному свету. Правда, их зависимость от дефицитных химических веществ, поступающих понемногу из земных недр, при этом все-таки сохранилась. Дело в том, что для фотосинтеза одного света мало — нужно еще какое-нибудь вещество, от которого можно оторвать электрон (это называется "фотоокисление"). В простейшем случае в роли донора электрона при фотосинтезе выступает сероводород. В результате деятельности аноксигенных фотосинтетиков сероводород превращается в серу (S) или сульфат (S042-). Опять незамкнутый цикл и накопление отходов!

 Но жизнь уже набирала силу, разнообразие микробов росло, и незамкнутые циклы постепенно начинали замыкаться. Планета захлебывается метаном и сульфатами? Что ж, эволюция нашла отличный выход из сложной ситуации: появились микроорганизмы, способные окислять метан при помощи сульфатов. Это были не просто микробы, а симбиотические микробные сообщества, состоящие из архей и бактерий. Архей окисляли метан, а бактерии восстанавливали сульфаты, причем оба процесса были каким-то не до конца еще понятным образом сопряжены между собой в неразрывное целое. Такие сообщества сохранились и по сей день в соответствующих местах обитания — там, где достаточно метана и сульфатов (например, в окрестностях подводных грязевых вулканов — см. ниже сюжет "В подводном грязевом вулкане обнаружены неизвестные микробы").

Перейти на страницу:

Похожие книги

Логика случая. О природе и происхождении биологической эволюции
Логика случая. О природе и происхождении биологической эволюции

В этой амбициозной книге Евгений Кунин освещает переплетение случайного и закономерного, лежащих в основе самой сути жизни. В попытке достичь более глубокого понимания взаимного влияния случайности и необходимости, двигающих вперед биологическую эволюцию, Кунин сводит воедино новые данные и концепции, намечая при этом дорогу, ведущую за пределы синтетической теории эволюции. Он интерпретирует эволюцию как стохастический процесс, основанный на заранее непредвиденных обстоятельствах, ограниченный необходимостью поддержки клеточной организации и направляемый процессом адаптации. Для поддержки своих выводов он объединяет между собой множество концептуальных идей: сравнительную геномику, проливающую свет на предковые формы; новое понимание шаблонов, способов и непредсказуемости процесса эволюции; достижения в изучении экспрессии генов, распространенности белков и других фенотипических молекулярных характеристик; применение методов статистической физики для изучения генов и геномов и новый взгляд на вероятность самопроизвольного появления жизни, порождаемый современной космологией.Логика случая демонстрирует, что то понимание эволюции, которое было выработано наукой XX века, является устаревшим и неполным, и обрисовывает фундаментально новый подход — вызывающий, иногда противоречивый, но всегда основанный на твердых научных знаниях.

Евгений Викторович Кунин

Биология, биофизика, биохимия / Биология / Образование и наука
Метаэкология
Метаэкология

В этой книге меня интересовало, в первую очередь, подобие различных систем. Я пытался показать, что семиотика, логика, этика, эстетика возникают как системные свойства подобно генетическому коду, половому размножению, разделению экологических ниш. Продолжив аналогии, можно применить экологические критерии биомассы, продуктивности, накопления омертвевшей продукции (мортмассы), разнообразия к метаэкологическим системам. Название «метаэкология» дано авансом, на будущее, когда эти понятия войдут в рутинный анализ состояния души. Ведь смысл экологии и метаэкологии один — в противостоянии смерти. При этом экологические системы развиваются в направлении увеличения биомассы, роста разнообразия, сокращения отходов, и с метаэкологическими происходит то же самое.

Валентин Абрамович Красилов

Культурология / Биология, биофизика, биохимия / Философия / Биология / Образование и наука