Имеющиеся в нашей стране реальные возможности использования достижений ядерной физики и техники в биологических и медицинских целях отражают аналогичные тенденции в других технически развитых странах. Например, в США (Лос-Аламосе) строится линейный ускоритель протонов с энергией 800 МэВ, на котором предполагается получить интенсивный пи-мезонный пучок — «фабрику» отрицательных пи-мезонов. По проекту Калифорнийского университета в Беркли планируется строительство мощного циклического ускорителя многозарядных ионов — омнитрона. Чрезвычайная дороговизна омнитрона обусловила ему конкуренцию с проектом реконструкции для этих же целей действующего ускорителя Бевалака — Беватрона.
Выведение мощных пи-мезонных пучков планируется также в Британской Колумбии и Швейцарии.
КТО КРЕПЧЕ И ПОЧЕМУ? ФАКТЫ И ГИПОТЕЗЫ
Знание действия зависит от знания причины и заключает в себе последнее.
Если подвергнуть общему облучению какое-нибудь животное или человека в сравнительно небольшой дозе, не вызывающей даже видимых изменений в его состоянии, например, в дозе 50—100 Р, то оказывается, что некоторые клетки, например лимфоциты (одни из клеток белой крови), при этом погибнут. В то же время в водной «рубашке» атомного реактора в Лос-Аламосе (США) обнаружены размножающиеся бактерии, хотя доза в воде составляла более 1 млн. Р/ч. Таков огромный диапазон чувствительности кионизирующим излучениям в природе — естественной радиочувствительности. В первом случае речь идет о крайне радиочувствительных, а во втором об исключительно радио-устойчивых, или, как иногда говорят, радиорезистентных, объектах. Кстати, упомянутые бактерии даже получили соответствующее название — micrococcus radiodurans — радио-устойчивый микрококк.
Перед нами возникло противоречие только что приобретенному небольшому запасу знаний. Речь идет о несоответствии правилу Бергонье и Трибондо, согласно которому следовало ожидать противоположных результатов: лимфоцит — клетка неделящаяся, зрелая и должна быть радиоустойчивой, а бактерии — интенсивно делящиеся клетки и, казалось бы, должны легко поражаться (?).
А в чем вообще причина смертельного эффекта ионизирующих излучений? Прежде чем попытаться ответить на эти сложные вопросы, совершим несколько параллельных прогулок.
За ясностью
Короткий маршрут в область терминологии избавит нас от бессмысленных блужданий, связанных с терминологической путаницей, существующей вокруг самого понятия радиочувствительности, которая, как читатель уже легко догадался, является основным предметом радиобиологических исследований. Здесь уместно вспомнить высказывание Декарта о том, что споров не существовало бы, если бы люди договорились об определениях.
При сравнении чувствительности к ионизирующим излучениям можно использовать самые различные реги- . стрируемые реакции вне зависимости от их значения для жизнеспособности облучаемых объектов, подвергающихся сравнительному изучению. Обязательно, однако, чтобы эти реакции в принципе проявлялись у сравниваемых объектов. Между тем вследствие высокой степени дифференцировки, присущей даже отдельным клеткам, а тем более тканям и системам, многие реакции являются высокоспецифичными. К примеру, нервной и мышечной тканям свойственна электрическая активность, строго специфическая для каждой из них и даже для их различных областей, что отчетливо регистрируется графически с помощью специальных приборов. Как показал Ю. Г. Григорьев, изменения биотоков головного мозга, отражающиеся на соответствующих кривых, можно зарегистрировать уже в процессе облучения при очень малых дозах — до 10 Р, что характеризует чрезвычайно высокую реактивность центральной нервной системы на воздействие ионизирующих излучений. Но из этого никак не следует вывод о ее высокой радиочувствительности, ибо никаких морфологических, да и жизненно важных функциональных изменений в нервной системе не наступает при облучении в дозах порядка сотен и даже тысяч рентген.
Вот почему в качестве количественного показателя радиочувствительности следует использовать отношение доз ионизирующих излучений, вызывающих равные специфические (одинаковые) эффекты в сравниваемых клетках или системах. Удобным критерием такого рода являются смертельные эффекты, учитываемые с помощью определения дозы, вызывающей одинаковую смертность. Наиболее часто говорят о величине ЛД50
— 50 %-ной летальной (смертельной) дозе; при облучении в этой дозе погибает примерно половина облученных объектов.