В самом деле, физико-химические данные свидетельствуют, что пространственная структура РНК не жесткая, она колеблется между различными состояниями, сильно различающимися по тому, какие участки образуют шпильки или другие элементы пространственной структуры. Это значит, что в одном состоянии про-мРНК будет нарезана на куски одним способом, а в другом – иным. Соответственно, разными окажутся выброшенные участки, и «зрелые» молекулы мРНК будут очень сильно отличаться друг от друга. Кроме того, накопление небольшого числа (или даже одной) точечных мутаций в про-мРНК может существенно нарушить соотношение пространственных структур, которые образует эта молекула.
Гилберт первым обратил внимание на то, что эти недостатки в организации генов эукариот, из-за которых они, по всей видимости, должны сильно уступать прокариотам в точности белкового синтеза, могут обернуться огромными преимуществами в эволюции. Судите сами: большая чувствительность к малым изменениям в ДНК и возможность одновременного синтеза зрелых мРНК с совершенно различными последовательностями нуклеотидов – все это может обеспечить искомое. А именно: испытание самых разных новых вариантов без полного отказа от старого. Это значило бы, что высшие организмы обладают тем механизмом изменчивости и отбора, которого так не хватало для примирения генетики и теории эволюции.
Считают, что экзон-интронное устройство генов сохранилось у эукариот от общего с прокариотами предка, гипотетического прародителя всего живого на Земле, «прогенота». У прокариот в ходе эволюции произошло сокращение управленческого аппарата, и они утратили способность к сплайсингу.
В ходе изучения сплайсинга мРНК Томас Чек (Колорадский университет, США) сделал открытие, оказавшее столь же ошеломляющий эффект, как в свое время открытие синтеза ДНК на РНК. Он обнаружил, что сплайсинг может идти и без участия белков! Сама РНК, без всякой посторонней помощи, разрезает себя на куски, выбрасывает интроны и сшивает экзоны. Конечно, такой «самосплайсинг» наблюдается лишь в редких случаях, для некоторых экзотических РНК, но принципиальное значение имеет сама возможность того, что РНК ведет себя подобно ферменту. До открытия Чека все были абсолютно убеждены, что нуклеиновые кислоты сами по себе, без помощи белков, ни на что не способны. Молекулы РНК, работающие как ферменты, назвали
Способность РНК к ферментативной активности неожиданно проливает свет на одну из центральных проблем предбиологической эволюции. Уже на заре молекулярной биологии стало ясно, что биологической, дарвиновской эволюции должна была предшествовать эволюция молекул. Но какому из двух основных классов биополимеров, белкам или нуклеиновым кислотам, отдать предпочтение, кто из них возник раньше в ходе предбиологической эволюции? Это напоминает вопрос о том, что появилось раньше – курица или яйцо, так как сегодня в клетке белки не могут появиться без ДНК и РНК, а ДНК и РНК ничего не могут без белков. Все же те, кто пытался представить себе, как было дело, склонялись к тому, что сначала были белки, которые как-то могли воспроизводить самих себя.
Открытие рибозимов радикально изменило ситуацию. Теперь кажется наиболее вероятным, что прародительницей всего живого на Земле была молекула РНК. То, что РНК может играть роль вещества наследственности, известно давно, со времени открытия РНК-содержащих вирусов. Теперь мы знаем, что РНК может играть роль ферментов и, наверное, она могла катализировать необходимые для воспроизведения самой себя реакции. Лишь впоследствии, в ходе дальнейшей эволюции, на стадии образования прогенота, РНК передала функции хранения генетической информации ДНК, которая больше подходит для этой цели, а каталитические функции передала молекулам белка, которые обладают уникальной способностью катализировать практически любые реакции.
В современной клетке РНК отведена достаточно скромная роль вспомогательной молекулы. Но следы ее былого величия видны повсюду. По существу, ни один важный, глубинный процесс в клетке не идет без участия РНК, даже тогда, когда, казалось бы, без нее вполне можно было бы обойтись. Например, для репликации ДНК нужна «затравка» (праймер). Роль праймера в клетке всегда играет коротенькая РНК (подробнее об этом мы поговорим в главе 7). А сколько молекул РНК участвует в синтезе белка? Ведь, казалось бы, можно обойтись и без мРНК, и без тРНК, и уж подавно без рибосомальных РНК. Но не тут-то было. К всеобщему изумлению выяснилось, что присоединение следующей аминокислоты к растущей белковой цепи на рибосоме происходит без участия белков, а катализируется рибосомной РНК. Таким образом, одна из самых важных реакций в современной клетке все еще катализируется не белковым ферментом, а рибозимом!