Хотя Уонг с сотрудниками не смог непосредственно наблюдать волны сверхспирализации в клетке, они сумели убедительно доказать реальность этих волн путем выключения различных топоизомераз. Наиболее убедительным было наблюдение положительной сверхспирализации плазмидной ДНК в клетках
Опыты Уонга заставили пересмотреть вопрос о биологической роли сверхспирализации. В самом деле, до этих опытов считалось, что ДНК-гираза существует в
Опыты Уонга перевернули все эти представления. Оказывается, ДНК-гираза в клетке выполняет работу по снятию положительных сверхвитков, а вовсе не по созданию отрицательной сверхспирализации. Понятие нативной сверхспирализации потеряло всякий смысл, так как локальная сверхспирализация может оказаться сильно положительной, сильно отрицательной или вообще нулевой в зависимости от положения промоторов, от соотношения между скоростью перемещения РНК-полимеразы вдоль ДНК и эффективностью работы топоизомераз по снятию сверхвитков, создаваемых движением РНК-полимеразы.
Физики и математики за работой
Конечно, чтобы понять как следует, в чем состоит роль сверхспирализации, необходимо всесторонне изучить не только ее влияние на биологические функции ДНК, но и на физическую структуру молекулы. За дело взялись физики. Однако сразу же возникли серьезные проблемы. Разные физические методы, с помощью которых пытались измерить величину сверхспирализации, давали разные результаты.
Как-то в начале 1970-х годов Джером Виноград, открывший явление сверхспирализации и работавший в Калтехе (так называют сокращенно Калифорнийский технологический институт), встретил математика Брока Фуллера, также из Калтеха, и попросил его помочь разобраться в проблеме кольцевых ДНК, поскольку сам он к тому времени совершенно запутался. Фуллер живо заинтересовался рассказом Винограда. Он почувствовал, что здесь могут оказаться полезными некоторые результаты, как раз привлекшие внимание математиков в то время. Они касались неожиданной связи между топологией и дифференциальной геометрией.
Эти две области математики изучают одинаковые объекты, кривые и поверхности, но с абсолютно разных точек зрения. Дифференциальная геометрия исследует локальные свойства поверхности, такие как кривизна, кручение. Топологию, напротив, совершенно не интересуют эти характеристики, для нее имеет значение, например, есть ли в поверхности дырки (но не важно, какой формы эти дырки), сколько их и т. д. Так, мраморную статую может изучать и геолог, и искусствовед. Но геолога интересует только камень, а искусствоведа – форма, приданная камню скульптором. Вряд ли эти люди нашли бы между собой общий язык, подходя к делу строго профессионально.
Столь же неожиданной оказалась для математиков связь между дифференциально-геометрическими и топологическими характеристиками одного класса поверхностей – двусторонних полос. Знаменитый лист Мёбиуса – частный случай полосы. Чтобы смастерить лист Мёбиуса, возьмите полоску бумаги, перекрутите ее на 180° вдоль длинной оси и склейте концы полоски. Затем начните с любой точки и ведите карандашом линию, параллельную краям полосы. Вскоре вы увидите, что вернулись к исходной точке, ни разу не оторвав карандаша от листа. Это и есть замечательное, даже несколько загадочное свойство листа Мёбиуса – он имеет всего лишь одну сторону. Поэтому его называют односторонней полосой.
Теперь вырежьте еще полоску из бумаги и вновь склейте концы. Но при этом перекручивайте их не на 180°, как при склейке листа Мёбиуса, а на угол, равный