Безотносительно степени толщины скорлупы она неизменно проницаема для воздуха, прежде всего, полагаю, посредством крохотных отверстий – каналов – в корке [скорлупе]… Каждый раз, когда я помещал яйцо под воду, при помощи воздушного насоса лишенную воздуха [то есть в вакуум]… было заметно, как воздух поднимался потоками из определенных точек, представляя доказательство таковых каналов{57}
.Количество пор в яйце заметно меняется от вида к виду, что частично, хотя и не полностью связано с размером яйца, в порядке уменьшения: примерно 30 000 в яйце страуса эму; 10 000 в курином яйце; 2200 в яйце алеутского пыжика, около 300 в яйце крапивника и, по нашей приблизительной оценке, около 16 000 в яйце бескрылой гагарки. В куриных яйцах плотность пор сходна в середине и на тупом конце яйца, а самая низкая – на остром конце{58}
. Поскольку поры довольно прямолинейны и тянутся вертикально от внутренней до внешней стороны скорлупы, их длина обычно сходна с толщиной скорлупы. У большинства видов поры – простые одиночные трубочки, но у страусов, чья скорлупа яиц очень толстая, поры иногда могут иметь два или три ответвления. Яйцо крапивника, весящее около одного грамма, имеет каналы пор диаметром около 3 мкм. На другом конце шкалы стоят поры в яйце эму, весящем 800 г – они достигают ширины 13 мкм{59}.В целом число и размеры пор определяют, в каком количестве и насколько быстро кислород проникает в яйцо. Помимо удаления нежелательного углекислого газа, поры позволяют развивающемуся эмбриону избавляться от водяного пара. Во время роста эмбрион выделяет воду, называемую метаболической и образующуюся в результате метаболизма пищи. У нас происходит тот же самый процесс: мы выделяем метаболическую воду и избавляемся от ее части, по крайней мере в виде водяного пара, когда дышим. Различные виды пищи высвобождают разное количество метаболической воды: например, 100 г жира производят 110 г воды, 100 г крахмала создают 55 г воды, а 100 г белка высвобождают 41 г воды.
Если представление о метаболической воде кажется трудным для понимания, позвольте мне рассказать вам о зебровой амадине, крохотной птичке из Австралии, которая великолепно приспособлена к выживанию в очень засушливых условиях пустыни, но более знакома в наши дни как клеточная птица. В неволе и при кормлении только стандартными сухими семенами для птиц, зебровые амадины способны выжить без воды в течение как минимум восемнадцати месяцев{60}
. Они могут делать это, используя метаболическую воду, выделяемую, когда они переваривают сухие семена. Именно этот физиологический подвиг позволяет зебровой амадине выживать в самых засушливых пустынях Австралии. Это частично объясняет их появление в Европе в качестве клеточных птиц в начале 1800-х гг. – возможно, потому что они смогли пережить шестимесячный морской путь до Европы, часто, как мне думается, без свободного доступа к воде.В процессе роста развивающийся внутри яйца птенец выделяет большое количество метаболической воды из богатого жиром желтка. Эта вода должна быть удалена, иначе эмбрион утонул бы, если так можно выразиться, в собственных соках, и он справляется с проблемой, позволяя воде диффундировать в виде водяного пара сквозь поры в скорлупе. В результате в ходе инкубации яйца теряют вес. Замечательно, что, несмотря на огромную изменчивость между видами птиц по размеру яиц (от 0,3 г до 9 кг по весу), по продолжительности инкубации (10–80 дней) и относительному размеру желтка (от 14 до 67 %), потеря воды за время между откладкой яйца и вылуплением птенца всегда составляет примерно 15 % от исходного веса яйца. Водяной пар, улетучившийся во время инкубации, гарантирует, что относительное количество воды в яйце у птенца во время проклева останется тем же самым, каким было, когда яйцо было отложено. Иными словами, посредством естественного отбора состав свежеотложенного яйца эволюционировал, чтобы гарантировать правильное состояние тканей только что вылупившегося птенца в отношении содержания в них воды. За счет естественного отбора была достигнута такая суммарная эффективность движения газов через поры, что птенец перед вылуплением избавляется от всей метаболической воды, вырабатываемой им в ходе развития. Одно из последствий этой потери водяного пара – пространство в яйце, составляющее примерно 15 % от его объема, которое превращается в воздушную камеру на тупом конце яйца и снабжает птенца – как мы увидим в главе 8 – необходимым количеством воздуха прямо перед тем, как он выклюнется{61}
.