В другой раз мы вместе шли из школы и вычисляли, может ли один учитель вести уроки физкультуры во всей школе. Он очень плохо понимал, что и зачем надо делать, не мог сосчитать количество уроков в неделе, не знал потом, следует делить на 2 или умножать (2 урока в неделю в классе) и т. п.
Вот и сегодня он тоже был не на высоте. И не в том дело, что он соображал медленнее, чем раньше, а в том, что его поток гипотез был менее интенсивен, чем обычно, и они были менее разнообразны.
Характерен в этом отношении рассказ Гали З. о своем сыне. В их учебнике (кажется, второго класса) есть так называемые «задачи нестандартного содержания». В течение года ни одну из этих задач Лева решить не мог. Однако началось лето, и через две недели каникул он легко решил все задачи до единой: что-то его «отпустило».
Ноябрь 1983 года. Школа наводит ужас.
[Записано в те дни, когда Дима сложил все нечетные числа сначала от 1 до 99, а потом от 1 до 999.1]Так случилось, что в день занятия кружка (17 ноября) Дима поздно вернулся из школы, а погода была очень хорошая, и я после обеда выпустил его погулять. Поэтому уроки он стал делать после кружка, и контраст между его успехами на кружке и в школе оказался особенно ярким. Дело в том, что оценки первоклассникам начинают ставить только со второй четверти, т. е. с 10 ноября. За прошедшую неделю Дима получил четыре оценки по математике. Вот они в порядке поступления: 3, 2, 3, 2. Как раз в четверг, 17-го, Дима получил свою тетрадь домой: мы как родители двоечника должны были расписаться возле каждой оценки, чтобы показать, что мы с его успехами ознакомлены.
В чем же дело? Я внимательно просмотрел его тетрадь. Исписано около трети. Прежде всего, хочется отметить, что в ней нет ни одной – подчеркиваю, ни одной – арифметической ошибки. Я был даже удивлен: я привык, что в счете он нередко ошибается. Наивысшая оценка – тройка – стоит за решение «примеров», т. е. за чистые вычисления типа: 9–4 – 3 = 2. Здесь претензии только к почерку. Написал бы красиво – вполне мог бы получить 5. Остальные оценки – за задачи, и с ними дело хуже. Конечно же, все задачи решены правильно – этот факт я выношу за скобки (и, видимо, учительница его выносит за скобки тоже). Однако
На лугу – 3 к.
На поле – 4 к.
?
Затем, в момент выполнения действия, размерность исчезает: 3 + 4 = … Когда же получается результат, то размерность появляется снова – но на этот раз обязательно в скобках:. . = 7 (к.). (В принципе – вполне разумно, иначе слева стояли бы безразмерные величины, а справа – уже коровы. Но что понимают в этом первоклашки?) Наконец, в ответе это самое «к.» пишется опять без скобок. Дима поначалу не разобрался в этой системе и иногда писал лишние скобки где не надо, а иногда забывал поставить размерность вообще. Трудности вызывает также место для вопросительного знака. Если в задаче спрашивается, сколько штук чего-то у кого-то, то и знак вопроса ставится в той же строчке, например:
На поле —? – на 1 к. больше.
Если же требуется узнать суммарное количество, то к обеим строчкам ставится квадратная скобка, и знак вопроса после нее – как в примере выше. В этом случае, кстати, сразу ясно, что задача – на сложение. Однако Дима этой условности тоже не уловил. Он не приписывал квадратной скобке никакого определенного смысла или понимал ее интуитивно как то, что «требуется что-то узнать». В результате он иногда навешивал эту скобку и на задачи на вычитание (это уже было не в школьной тетради, а в наших тренировках).
Одним словом, как читатель уже догадался, мы приступили к тренировкам. Алла задала Диме такую задачу: «У Светы было 8 ромашек; 3 она подарила другой девочке; сколько ромашек у нее осталось?» (Это после наших-то прогрессий!) Требовалось, конечно, не решить эту задачу, а правильно записать условие и решение.