В отличие от большинства насекомых, у которых четыре крыла, мухи, как предполагает их латинское имя Diptera [Двукрылые], имеют только два. Вторая пара крыльев уменьшилась до пары "жужжальцев". Они раскачиваются подобно очень высокоскоростным индийским булавам, которых они напоминают, функционирующих как крошечные гироскопы. Откуда мы знаем, что жужжальца произошли от крыльев предков? Есть несколько причин. Они занимают в точности то же место в третьем сегменте грудного отдела, что занимает летательное крыло во втором грудном сегменте (а у других насекомых и в третьем тоже). Они движутся по той же "восьмерке", как и крылья мух. У них та же эмбриология, что и у крыльев, и, хотя они крошечные, если на них тщательно посмотреть, особенно в период развития, можно увидеть, что они - недоразвитые крылья и явно модифицированы - если Вы не являетесь отрицателем эволюции - из их предковых крыльев. Как свидетельство той же истории, существуют мутантные плодовые мушки, так называемые гомеотические мутанты, чья эмбриология аномальна, которые выращивают не жужжальца, а вторую пару крыльев, как у пчел или любого другого вида насекомых.
Жужжальца у долгоножки
На что могли быть похожи промежуточные стадии между крыльями и жужжальцами, и почему естественный отбор благоприятствовал промежуточным формам? Какова польза от половины жужжальца? Дж.У.С.Прингл, мой старый Оксфордский профессор, чье непривлекательное выражение лица и неуклюжее поведение принесло ему прозвище "Смеющийся Джон", главным образом отвественен за раскрытие того, как работают жужжальца. Он указал, что в основании всех крыльев насекомых есть крошечные органы восприятия, распознающие скручивание и другие силы. Органы восприятия у основания жужжалец очень похожи - другая часть свидетельства, что жужжальца являются модифицированными крыльями. Задолго до того, как эволюционировали жужжальца, информация, текущая в нервную систему от органов восприятия в их основании, приспособила быстро снующие крылья действовать в качестве рудиментарных гироскопов. То, насколько любой летательный аппарат по природе неустойчив, должно компенсироваться сложными приборами, например гироскопами.
Весь вопрос эволюции устойчивых и неустойчивых летунов очень интересен. Посмотрите на этих двух птерозавров, вымерших летающих рептилий, современников динозавров. Любой аэроинженер мог бы сказать Вам, что рамфоринх, древний птерозавр на рисунке сверху, должно быть, был устойчивым летуном, из-за своего длинного хвоста с ракеткой для пинг-понга на конце. Рамфоринх не нуждался в сложном гироскопическом контроле, таком как у мух с их жужжальцами, потому что его хвост делал его устойчивым по своей сути. С другой стороны, как мог бы сказать тот же инженер, он не был очень маневренным. В любом летательном аппарате существует оптимальное соотношение между стабильностью и маневренностью. Великий Джон Мейнард Смит, работавший проектировщиком самолетов, прежде чем возвратиться в университет давать лекции по зоологии (на том основании, что самолеты были шумными и старомодными), указывал, что летающие животные могут перемещаться в течение эволюционного времени назад и вперед вдоль спектра своих оптимальных соотношений, иногда теряя врожденную стабильность в интересах увеличения маневренности, но платя за это увеличением вычислительных и измерительных мощностей - мощностью мозга. На нижнем рисунке на предыдущей странице представлена анхангера, поздний птеродактиль из Меловой эры, приблизительно на 60 миллионами лет более поздний, чем юрской рамфоринх. У анхангеры вообще почти не было хвоста, как у современной летучей мыши. Подобно летучей мыши, это, конечно, был неустойчивый летательный аппарат, зависящий от измерительного и вычислительного оборудования, чтобы осуществлять утонченный, постоянный контроль над его несущими поверхностями.