Следующую стадию в оригами эмбриона называют нейруляцией. На схеме справа показано поперечное сечение середины спины нейрулирующего эмбриона земноводного (это могла быть или лягушка, или саламандра). Черный круг - "нотохорда", придающий жесткость стержень, который действует как предшественник позвоночника. Нотохорда является отличительной особенностью типа хордовых, к которому принадлежим мы и все позвоночные животные (хотя у нас, как и у большинства современных позвоночных животных, она есть только у эмбрионов). В нейруляции, как и в гаструляции, инвагинация [впячивание] очень показательна. Вы помните, я говорил, что нервная система происходит из эктодермы. Ну так вот как это происходит. Участок эктодермы впячивается (все дальше назад вдоль тела как застежка-молния), свертывается в трубку, и стягивается там, где стороны трубки "застегиваются на молнию", так что оказывается проходящим вдоль всего тела между внешним слоем и нотохордой. Этой трубке предстоит стать спинным мозгом, главным нервным стволом тела. Передний конец ее набухает и становится мозгом. А все остальные нервы получаются из этой первичной трубки благодаря последующему делению клеток.
Я не хочу вдаваться в детали гаструляции или нейруляции, только скажу, что они замечательны, и что метафора оригами вполне прилично сохраняется в обеих. Я рассмотрел общие принципы, благодаря которым эмбрионы становятся более сложными с помощью раздувающегося оригами. Ниже приведена одна из тех вещей, которую слои клеток, как было подмечено, делают в течение эмбрионального развития, например во время гаструляции. Вы можете легко увидеть, как такая инвагинация могла быть полезным действием для раздувающегося оригами, и она действительно играет крупнейшую роль и в гаструляции, и в нейруляции.
Внедрение в листе клеток
Гаструляция и нейруляция завершаются в раннем развитии, и они затрагивают всю форму эмбриона. Инвагинация и другие маневры "раздувающегося оригами" обеспечивают эти стадии ранней эмбриологии, и они, и подобные уловки также участвуют позднее в развитии, когда создаются специализированные органы, такие как глаза и сердце. Но, если нет рук для сворачивания, какой механический процесс обеспечивает эти динамичные перемещения? Отчасти, как я уже сказал, простое расширение. Клетки размножаются по всему слою ткани. Его площадь, следовательно, увеличивается и, за неимением пространства, у него мало выбора, кроме как скручиваться или впячиваться. Но этот процесс более управляем, и он был расшифрован группой ученых, объединенных блестящим математическим биологом Джорджем Остером из Калифорнийского университета в Беркли.
Остер и его коллеги использовали ту же стратегию, которую мы рассматривали ранее в этой главе для компьютерного моделирования стай скворцов. Вместо того, чтобы программировать поведение всей бластулы, они запрограммировали единственную клетку. Затем они "клонировали" много клеток, все время наблюдая за тем, что происходило, когда эти клетки собрались вместе на компьютере. Когда я говорю, что они запрограммировали поведение единственной клетки, будет лучше сказать, что они запрограммировали математическую модель единственной клетки, собрав в этой модели некоторые известные факты об одиночной клетке, но в упрощенной форме. В частности, известно, что внутренние пространства клеток пересекаются микронитями: своего рода миниатюрными резинками, но с дополнительным свойством - способностью активно сокращаться, как сжимаются мышечные волокна. На самом деле, микронити используют тот же принцип сокращения, что и мышечные волокна. Модель Остера упростила клетку до двух измерений, для того чтобы изобразить ее на экране компьютера, и всего лишь с полудюжиной нитей, стратегически размещенных в клетке, как Вы видите на диаграмме выше. В компьютерной модели всем микронитям дали определенные количественные свойства с названиями, которые что-то означают для физиков: "коэффициент вязкостного демпфирования" и "постоянная упругой пружины". Не важно, что они в точности подразумевают: они являются теми вещами, которые физикам нравится измерять у пружин. Хотя надо полагать, что в реальной клетке многие нити были бы способны сокращаться, Остер и его коллеги упростили дело, снабдив только одну из шести нитей этой способностью. Если бы они смогли бы получить реалистичные результаты даже после того, как откинули некоторые из известных свойств клетки, по-видимому, было бы возможно добиться не менее хороших результатов с более сложной моделью, в которой эти свойства сохранялись. Вместо того, чтобы позволять одной сокращающейся нити в их модели произвольно сокращаться, они встроили свойство, распространенное в определенного рода мышечных волокнах: растянутое сверх определенной критической длины, волокно реагировало, сокращаясь до намного меньшей длины, чем его нормальная равновесная длина.