Читаем САМОЕ НАЧАЛО (Происхождение Вселенной и существование Бога) полностью

Допустим, что существует библиотека, содержащая реально бесконечное число книг. Представим себе, что книги в ней только двух цветов, чёрного и красного, и что они стоят на полках, чередуясь: чёрная, красная, чёрная, красная, и т.д. Если кто-то скажет нам, что число чёрных книг равно числу красных, мы, вероятно, не удивимся. Но поверим ли мы, если нам скажут, что число чёрных книг равно числу чёрных и красных книг вместе? Ведь в таком собрании мы обнаружим все чёрные книги плюс бесконечное число красных книг!

Или же представим себе, что у нас есть книги трёх цветов, четырёх, пяти или даже ста. Поверим ли мы, что книг одного цвета столько же, сколько всего книг в библиотеке?

Или вообразите, что в библиотеке бесконечное число цветов книг. Можно предположить, что в бесконечно большой библиотеке будет приходиться по одной книге на каждый из бесконечного числа цветов. Но это не обязательно так. Как утверждают математики, если число книг действительно бесконечно, то на каждый из бесконечного числа цветов может прийтись и бесконечное количество книг. Таким образом мы получаем бесконечность бесконечностей! И тем не менее, если мы возьмём все книги всех цветов, их окажется не больше, чем книг только одного цвета.

Продолжим наши рассуждения. Предположим, что у каждой книги на корешке отпечатан номер. Поскольку библиотека реально бесконечна, каждое возможное число отпечатано на какой-либо из книг. Поэтому мы не можем добавить к библиотеке ещё одну книгу, ибо какой номер ей дать? Всё номера уже заняты. Таким образом, новой книге нельзя дать номера! Но это абсурд, так как в действительности предметы всегда можно нумеровать.

Если бы бесконечная библиотека существовала, то к ней невозможно было бы добавить ещё одну книгу. (Не потому ли, что она уже включала бы все существующие книги, и новую просто неоткуда было бы взять? Нет, ведь достаточно вырвать по листку из каждой книги первой сотни, склеить их вместе, поставить эту новую книгу на полку, и всё — библиотека пополнена!) Поэтому напрашивается единственно возможный вывод: библиотека, актуально бесконечная, — существовать не может.

Но предположим, что мы можем пополнить эту библиотеку, и я ставлю книгу на полку. По утверждению математиков, число книг в библиотеке осталось прежним. Как это может быть? Ведь мои опыт говорит: если я поставил книгу на полку, то там стало книгой больше, а если снял, то одной меньше.

Мне легко вообразить себя, ставящего и снимающего эту книгу. Должен ли я впрямь всерьёз поверить, что когда я добавляю книги, их число не увеличивается, а когда убираю — не уменьшается? А если я добавлю к этой библиотеке бесконечное число или даже бесконечность бесконечностей книг? Неужели и теперь в библиотеке ни на одну книгу не больше, чем прежде? Мне в это трудно поверить. А вам?

А теперь давайте, наоборот, выдавать книги из библиотеки. Предположим, в понедельник мы выдали книгу номер восемь. Разве число книг не уменьшилось на одну?

Во вторник — выдадим все книги с нечётными номерами. Ушло бесконечное число книг, но математики скажут, что в библиотеке книг меньше не стало.

Допустим, что в среду мы выдали книги за номерами 4, 5, 6,.. и до бесконечности. Единым махом библиотека практически вся опустела, бесконечное число книг сведено к конечному: к трём. Но позвольте, ведь мы на этот раз выдали столько же книг, что и во вторник! Почему же такая разница? И кто поверит, что такая библиотека может на самом деле существовать?

Все эти примеры иллюстрируют тот факт, что актуальная бесконечность не может иметь места в физическом мире. Я вновь хочу подчеркнуть: это ничем не грозит теоретической системе, введённой в современную математику Г. Кантором. Больше того: даже такие энтузиасты математических теорий бесконечного, как Д. Гилберт, охотно соглашаются с тем, что понятие актуальной бесконечности — это только идея, не имеющая никакого отношения к реальному миру.26 Поэтому — мы вправе заключить: актуальная бесконечность существовать не может.

Вторая посылка: Ряд событий во времени, не имеющий начала, представляет собой актуальную бесконечность.

Под «событием» я подразумеваю любую перемену, происходящую в физическом мире. То есть: если ряд прошлых событий (или перемен) всё время уходит в прошлое и никогда не имеет начала, то в этом случае, взятые все вместе, эти события составляют актуально бесконечное множество.

Допустим, мы спрашиваем, откуда появилась такая-то звезда. Нам отвечают, что она появилась в результате взрыва звезды, существовавшей до этого. Тогда мы спрашиваем, откуда появилась та звезда? Она тоже возникла из звезды, существовавшей до неё. А эта звезда откуда? Из другой, предыдущей звезды и так далее. Этот ряд звёзд будет примером безначального во времени ряда событий.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже