Рис. 3.
Бор отсек голову Гидре неустойчивости, но на ее месте вырастала другая. Согласно Бору, электрон никогда не может занимать никакое положение между орбитами; таким образом, совершая скачок, он должен каким-то образом непосредственно переходить на другую орбиту. Это не орбитальный прыжок через пространство, а что-то радикально новое. Хотя, возможно, было бы соблазнительно изображать скачок электрона как прыжок с одной ступеньки лестницы на другую, однако электрон совершает скачок, не пересекая пространство между ступеньками. Вместо этого он как будто исчезает на одной ступеньке, снова появляясь на другой — без какого бы то ни было непрерывного перехода. Больше того, нельзя сказать, куда он собирается перескакивать, если существует больше одной более низкой ступени, между которыми он может выбирать. Можно давать лишь вероятностные предсказания.
Возможно, вы заметили в квантовой концепции света кое-что странное. Говорить, что свет существует в виде квантов, фотонов, — значит утверждать, что свет состоит из частиц, подобных песчинкам. Однако такое утверждение во многом противоречит повседневному опыту, который мы получаем, имея дело со светом.
Представьте себе, например, что вы смотрите на отдаленный уличный фонарь через ткань матерчатого зонтика. Вы не увидите непрерывный поток света, проходящий насквозь, как следовало бы ожидать, если бы свет состоял из крохотных частиц (насыпьте песка в решето, и вы увидите, что я имею в виду). Вместо этого вы увидите узор из чередующихся темных и светлых каемок, который технически называется интерференционной картиной. Свет изгибается в нитях ткани и вокруг них, создавая картину, которую могут образовывать только волны. Таким образом, даже наш повседневный опыт показывает, что свет ведет себя как волна.
Тем не менее квантовая теория настаивает, что свет также ведет себя как пучок частиц, или фотонов. Наши глаза представляют собой такой замечательный инструмент, что мы можем сами наблюдать квантовую, зернистую природу света. В следующий раз, расставаясь с близким человеком в сумерках, обратите внимание на то, как вы видите удаляющуюся фигуру. Заметьте, что очертания удаляющегося объекта выглядят фрагментарными. Если бы световая энергия, отражающаяся от этого объекта и попадающая в оптические рецепторы вашей сетчатки, обладала волноподобной непрерывностью, то как минимум какой-то свет от каждой части объекта должен был бы всегда возбуждать ваши оптические рецепторы. Вы бы всегда видели полный образ. (Следует признать, что в слабом свете контраст между темным и светлым был бы не очень ясным, но это не влияло бы на четкость очертаний.) Однако вместо этого вы видите вовсе не четкие очертания, так как рецепторы ваших глаз реагируют на индивидуальные фотоны. В тусклом свете меньше фотонов, чем в ярком; поэтому в этой гипотетической сумеречной ситуации в любое данное время будут стимулироваться лишь немногие из ваших рецепторов — слишком немногие, чтобы определять очертания слабо освещенной фигуры. Следовательно, образ, который вы видите, будет фрагментарным.
Возможно, вам не дает покоя еще один вопрос: почему рецепторы не могут хранить данные бесконечно, пока мозг не соберет достаточно информации, чтобы собрать все фрагментарные картины в одно целое? К счастью для квантовых физиков, которые всегда отчаянно нуждаются в повседневных примерах квантовых явлений, оптические рецепторы могут хранить информацию лишь доли секунды. В тусклом свете в любой данный момент в ваших глазах будет возбуждаться недостаточно рецепторов для создания полного изображения. Когда в следующий раз в сумерках вы будете говорить «прощай» неясной удаляющейся фигуре любимого человека, не забудьте подумать о квантовой природе света; это, несомненно, уменьшит боль вашей разлуки [8].
Когда свет рассматривается как волна, он оказывается способным одновременно быть в двух (или более местах) — как в случае, когда он проходит через отверстия ткани зонтика, и образует дифракционную картину; однако, когда мы улавливаем его на фотографической пленке, он проявляется дискретно, отдельными пятнышками, подобно потоку частиц. Таким образом, свет должен быть и волной, и частицей. Парадоксально, не так ли? Дело касается одного из бастионов старой физики: однозначного описания на естественном языке. Кроме того, на карту поставлена сама идея объективности: зависит ли природа света — то, чем является свет, — от того, как мы его наблюдаем?