Подобным образом можно изобразить и основные теоретико-множественные операции. Так, пересечением двух множеств А и В называется некоторое третье множество С, которое состоит из тех и только тех элементов двух исходных множеств, которые одновременно принадлежат и множеству А, и множеству В. Для этой операции также имеется специальное обозначение: С= А о В. Например, если в качестве множества А для операции пересечения рассмотреть множество сотрудников некоторой фирмы, а в качестве множества В – множество всех мужчин, то нетрудно догадаться, что множество С будет состоять из элементов -± всех сотрудников мужского пола данной фирмы. Операция пересечения множеств также может быть проиллюстрирована с помощью диаграмм Венна (рис. 2.2). На этом рисунке условно изображены два множества А и В, затененной области как раз и соответствует множество С, являющееся пересечением множеств А и В.
Рис. 2.2 Диаграмма Венна для пересечения двух множеств
Следующей операцией, которая также допускает наглядную интерпретацию, является операция объединения множеств. Под объединением двух множеств А и В понимается некоторое третье множество, пусть это будет D, которое состоит из тех и только тех элементов, которые принадлежат или А, или В, или им обоим одновременно. Конечно, специальное обозначение есть и для этой операции: D= AuB. Так, если в качестве множества А рассмотреть множество, состоящее из клавиатуры и мыши, а в качестве множества В – множество, состоящее из системного блока и монитора, то нетрудно догадаться, что их объединение, т. е. множество D, образует основные составляющие персонального компьютера. И для этой операции имеется условное графическое представление (рис. 2.3). На этом рисунке объединению двух исходных множеств также соответствует затемненная область, только размеры и форма ее отличаются от случая пересечения двух множеств на предыдущем рисунке.
Рис. 2.3. Диаграмма Венна для объединения двух множеств
Последнее, на что следовало бы обратить внимание при столь кратком знакомстве с основами теории множеств – это на так называемые понятия мощности множества и отношения множеств. Хотя существуют и другие операции над множествами, а также целый ряд дополнительных понятий, их рассмотрение выходит за рамки настоящей книги. Что касается понятия мощности множества, то данный термин важен для анализа кратности связей, поскольку ассоциируется с количеством элементов отдельного множества. В случае конечного множества ситуация очень простая, поскольку мощность конечного множества равна количеству элементов этого множества. Таким образом, возвращаясь к примеру с множеством А квартир жилого дома, можно сказать, что его мощность равна 100.
Ситуация усложняется, когда рассматриваются бесконечные множества, т. е. множества, не являющиеся конечными. Не вдаваясь в технические детали, которые послужили источником драматичного по своим последствиям кризиса основ математики, ограничим наше рассмотрение бесконечными множествами счетной мощности. Такими множествами принято считать множества, содержащие бесконечное число элементов, которые, однако, можно перенумеровать натуральными числами 1, 2, 3 и т. д. При этом важно иметь в виду, что достичь последнего элемента при такой нумерации принципиально невозможно, иначе множество окажется конечным. Например, есть все основания считать множество всех звезд бесконечным, хотя многие из них имеют свое уникальное название. С другой стороны, множество всех возможных комбинаций из 8 символов, которые могут служить для ввода некоторого пароля, конечное, хотя и достаточно большое. Или, говоря строгим языком, это множество имеет конечную мощность.
Наконец, было упомянуто и следующее понятие, различные аспекты которого будут служить темой рассмотрения во всех последующих главах. Это фундаментальное понятие отношения множеств, которое часто заменяется терминами связь или соотношение. Данный термин ведет свое происхождение от теории множеств и служит для обозначения любого подмножества упорядоченных кортежей, построенных из элементов некоторых исходных множеств. При этом под кортежем понимается просто набор или список элементов, важно только, чтобы они были упорядочены. Другими словами, если рассматривать первый элемент кортежа, то он всегда будет первым в списке элементов, второй элемент кортежа будет вторым элементом в списке и т. д. Можно ли это записать с использованием специальных обозначений?