Читаем САМОУПРАВЛЯЕМЫЕ СИСТЕМЫ И ПРИЧИННОСТЬ полностью

Согласно второму принципу (наибольшей вероятности), все физические закрытые системы переходят от статистически менее вероятного состояния к более вероятному состоянию, т. е. от большей упорядоченности и организации к меньшей упорядоченности. При этом уменьшается та доля энергии системы, которая может быть превращена в работу. Происходит необратимый процесс «обесценения» энергии, выражаемый ростом физической энтропии в соответствии со вторым началом термодинамики.

Оба эти принципа неприменимы для описания взаимодействия элементов самоуправляемой системы, самоуправляемых систем с внешней средой и друг с другом, если рассматривать процесс в целом. Если же брать отдельные элементы процесса самоуправления, то они могут быть описаны при помощи физических понятий, в том числе и упомянутых принципов.

Так, например, сидящая на нижней ветви ели белка, увидев у подножия соседнего дерева гриб, вместо того чтобы спуститься на землю и побежать за ним

37

кратчайшим путем, предпочитает взобраться повыше, а затем, перепрыгнув на ветви соседнего дерева, спуститься за добычей. Каждый элемент поведения белки может быть описан в строгом соответствии с физическими законами: столько-то калорий было затрачено на подъем, столько-то единиц силы было приложено, чтобы придать необходимое ускорение при прыжке, и т. д. Однако ответить на вопрос, почему белка совершила такой неэкономичный путь, почему она сперва перешла от более вероятного к менее вероятному состоянию, одна только физика не в состоянии.

При физическом взаимодействии объектов между ними происходит обмен вещества и энергии. При взаимодействии с внешней средой самоуправляемая система тоже участвует в обменных процессах. Однако характер таких обменных процессов уже иной. Все самоуправляемые системы принадлежат к классу открытых систем '. Они активно извлекают из внешней среды энергию в большем количестве, чем это необходимо для компенсации роста энтропии, обусловленного необратимыми процессами внутри самоуправляемой системы. Тем самым они обеспечивают регулярное взаимодействие своих элементов и подсистем.

Использование энергии внешней среды позволяет самоуправляемым системам быть в некотором смысле антиэнтропийными. За время существования таких систем их энтропия поддерживается на одном уровне или даже временами уменьшается, если система достаточно высоко организована и способна к прогрессивному развитию.

Так как самоуправляемые системы неизбежно изнашиваются, тенденция роста энтропии в конце концов одерживает верх над тенденцией уменьшения энт-

1 Л. Берталанфи. Общая теория систем: критический обзор — «Исследования по общей теории систем». М., 1969, стр. 37.

ЗЯ

ропии. Антиэнтропийный характер самоуправляемых систем не вступает в противоречие со вторым началом термодинамики, так как при функционировании этих систем в роли подсистем более общих систем (среда — самоуправляемая система) второе начало распространяется и на них. Энтропия более общей системы, включающей в себя в качестве своих подсистем внешнюю среду и самоуправляемые системы, всегда возрастает.

При взаимодействии с внешней средой самоуправляемая система в целом и некоторая часть ее элементов переходят от менее вероятных состояний к более вероятным в каком-то отношении состояниям. Для того чтобы процесс самоуправления не прерывался, самоуправляемая система должна возвращаться к маловероятным состояниям. Для этого она использует энергию внешней среды, затрачивая ее для перевода некоторой части своих элементов и подсистем в маловероятные состояния.

Если рассматривать самоуправляемую систему в целом, то возобновление и поддерживание маловероятных состояний ее элементов является ведущей тенденцией процесса самоуправления. С исчезновением этой тенденции самоуправляемая система разрушается и превращается в скопище простых физических систем. Эту особенность самоуправляемых систем А. Сент-Дьердьй показал на примере различий между живыми и физическими системами и соответственно между биологическим и физическим подходами к вопросу: «Биология — это наука о невероятном, и я думаю, что в принципе для организма существенны только статистически невероятные реакции. Если бы метаболизм осуществлялся в результате ряда вероятных и термодинамически спонтанных реакций, то мы сгорели бы и вся машина остановилась бы, подобно часам, лишенным регулятора. Реакции контролируют-

39

ся тем, что они статистически невероятны и могу г происходить только благодаря специфическим механизмам, способным обеспечить их регулирование. Таким образом, в живом организме становятся возможными реакции, которые кажутся физику невозможными или, во всяком случае, невероятными» '.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже