Когда эта головоломка впервые появилась в журнале, то более пятидесяти тысяч читателей написали в редакцию: «Здесь нет никакого пути». И все же это очень простая головоломка.
70
На Востоке искусство смешивания различных сортов чая не пренебрегает миллионными долями унции! Говорят, секреты некоторых смесей сохранялись в глубокой тайне и веками их не удавалось повторить.
Дабы проиллюстрировать, сколь сложно проникнуть в тайну искусства смешивания чая, мы предлагаем вашему вниманию одну простую головоломку, где смешиваются только два сорта.
Составитель смесей получил два ящика чая. Оба они были кубической формы, но имели разные размеры. В большем ящике находился черный чай, а в меньшем – зеленый. Смешав содержимое этих ящиков, человек обнаружил, что полученной смесью удалось заполнить ровно 22 коробки кубической формы и одинакового размера. Допустим, что внутренние размеры коробок выражаются конечной десятичной дробью. Сумеете ли вы определить, в какой пропорции в данную смесь входили черный и зеленый чай? [Другими словами, найдите два различных рациональных числа, таких, чтобы при сложении их кубов получился результат, который после деления на 22 и последующего извлечения кубического корня привел бы тоже к рациональному числу, –
71
Стала классической легенда, связанная с задачей об удвоении поверхности куба. Филопон рассказывает, как афиняне, напуганные эпидемией чумы 432 г. до н. э., обратились за советом к Платону. Но прежде чем прийти к великому философу, они воззвали к Аполлону, который устами Дельфийского оракула повелел им вдвое увеличить размеры золотого алтаря в своем храме. Однако афиняне оказались неспособными это сделать. Платон сказал, что несчастье постигло их из-за злостного пренебрежения возвышенной наукой геометрией, и посетовал, что среди них не нашлось ни одного человека, достаточно мудрого, чтобы решить эту задачу.
Задача Дельфийского оракула, где речь идет просто об удвоении куба, так тесно связана с задачей о кубах Платона, что не слишком искушенные в математике авторы их часто путают. Последнюю задачу называют также задачей о геометрических числах Платона, утверждая обычно, что об истинных ее условиях почти ничего не известно. Некоторые считают даже, что ее условия утеряны.
Существует древнее описание массивного куба, воздвигнутого в центре выложенной плитами площадки, и не требуется большого воображения, чтобы связать этот монумент с задачей Платона. На рисунке вы видите Платона, созерцающего такой массивный мраморный куб, который сложен из некоторого числа меньших кубов. Монумент возвышается в центре квадратной площадки, выложенной такими же малыми мраморными кубами. Число кубов в площадке и в монументе одинаково. Скажите, сколько кубов требуется, чтобы построить монумент и квадратную площадку, и вы решите великую задачу о геометрических числах Платона.
72
Дэдвудский экспресс доставил в шахтерский городок два ящика для одной юной леди. Между проводником и шахтерами, приятелями этой леди, которые явились за грузом, произошел спор.
Дело в том, что проводник хотел взять плату за провоз ящиков согласно прейскуранту – по 5 долларов за кубический фут. А шахтеры упрямо отказывались платить на подобных условиях, утверждая, что по действующим на шахтах законам всегда платят за погонный фут. Да и вообще молодые люди не могли понять, какое право имеет железнодорожная компания касаться «кубического содержимого» ящиков юной леди!
Проводнику в конце концов пришлось принять их условия: он измерил длину ящиков и взял по 5 долларов за погонный фут. Оба ящика имели форму правильных кубов, и один был ровно вдвое ниже другого.
Самое странное состоит в том, что, приложив ящики друг к другу и измерив их суммарную длину, проводник обнаружил, что в обоих случаях цены за провоз не отличаются даже на одну тысячную цента: можно было с равным успехом брать по 5 долларов как за кубический, так и за погонный фут.
Каковы размеры двух ящиков?
Эта простая, но и достаточно интересная головоломка заставит вас подумать, прежде чем вы найдете правильный ответ.
73
Для читателей, интересующихся трюками, которые можно было бы продемонстрировать в гостиной, мы предлагаем позабавящую гостей головоломку. Вам нужны для этого восемь бокалов – четыре пустых и четыре полных.
Здесь, как и при демонстрации многих других трюков такого типа, все зависит от умения и ловкости рук. Вы должны тщательно подготовиться, чтобы быстро и легко проделывать нужные манипуляции как в ту, так и в другую сторону. Если вы к тому же будете отвлекать зрителей разговором, создастся впечатление, что повторить этот маленький трюк очень просто. Каждый не откажется продемонстрировать свою сноровку, однако девяносто девять человек из ста не справятся с заданием.