Читаем Сборник бихевиорационализма полностью

Теория графов чрезвычайно молода. К. Ст. Дж. А. Нэш-Вильямс в введении к «Теории графов» У. Татта Москва Мир 1988 г. пишет:

«В ранний период моей научной деятельности занятие теорией графов было редкостью и считалось болезненной одержимостью. Такой человек не мого надеяться встретить «себе подобного» среди своих коллег, а чтобы найти такового в своей стране должен был затратить массу усилий: он просто не рассчитывал установить научные контакты с другими математиками иначе, как через публикуемые работы. Фактически по этому предмету не было никаких лекционных курсов, ни для аспирантов, ни для хотя бы старшекурсников. Некоторым математикам казалось даже сомнительным, что теория графов вообще является достойным разделом математики. Сомнения, по-видимому, основывались на отсутствии в ней хорошо разработанных методов, а также на недостаточной ее унифицированности и на том, что она казалась состоящей в основном из решений разрозненных задач, не связанных тесно ни друг с другом, ни с остальной математикой».

Дадим определение графа:

«Граф это совокупность двух множеств V (точек) и E (линий), между элементами которых определено отношение инцидентности, причем каждый элемент е, принадлежащий Е инцидентен ровно двум элементам v1 и v2 принадлежащим множеству V. Элементы множества V называются вершинами графа G, элементы множества Е – его ребрами. Вершины и ребра графа G называют еще его элементами и вместо v принадлежит множеству V и е принадлежит множеству Е говорят соответственно v принадлежит G и е принадлежит G».


42.

«Миф» Барта представляет собой трехместное соответствие, являющееся неориентированным графом, включающее три вершины (Франция, молодой солдат-африканец, кисть его руки) и два ребра – (молодой солдат-африканец предан Франции, молодой солдат-африканец вскидывает кисть руки).


43.

N-местное соответствие «экипаж» может быть представлено в форме графа. Допустим: седок сидит в коляске, кучер погоняет лошадь, седок говорит кучеру трогаться, лошадь запряжена в коляску.

седок(А)коляска(В)лошадь(C)кучер(D)


А
DВ
С

Ребро АВ = седок сидит в коляске.

Ребро BC = лошадь запряжена в коляску.

Ребро АD = седок говорит кучеру трогаться.

Ребро DC = кучер погоняет лошадь.


44.

В граф связываются также то, что фон Вригт называет «положениями дел». Это физические инструкции.

Перейти на страницу:

Похожие книги

Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука