Читаем Сборник работ полностью

Чуткие умы всегда чувствовали этот живой парадокс, заключённый в понятии вероятности: с помощью вероятностей элементарных исходов мы можем считать вероятности более сложных событий, но сосчитать вероятность самого элементарного исхода мы не можем[140]. А. Пуанкаре писал в своём «Исчислении вероятностей»: «Полное определение вероятности есть, тем самым, род порочного круга: как узнать, что все случаи равновероятны? Математическое определение здесь невозможно; мы должны в каждом применении делать соглашения (conventions), говоря, что мы рассматриваем такие-то и такие случаи как равновероятные. Эти соглашения не совсем произвольны, но они ускользают от сознания математика, который и не должен их исследовать, как только они уже приняты. Таким образом, целое задачи о вероятности распадается на два этапа исследования: первый, так сказать, метафизический, который оправдывает то или иное соглашение; и второй, математический, который применяет к этим соглашениям правила исчисления»[141]. Теория вероятностей как математическая дисциплина, особенно после формулировки её в аксиоматической форме А.Н. Колмогоровым в 1933 году, должна быть отнесена как раз ко второму этапу. А первый, метафизический, это и есть тот, которым мы сейчас занимаемся. Как же оправдать априорные вероятности, назначаемые элементарным исходам? Здесь мы опять видим в работе принцип недостаточного основания. Когда мы говорим о симметрии монеты или кубика, мы, на самом деле, и подчёркиваем как раз, что у нас нет оснований считать выпадение одной стороны более возможным, чем другой, и эта равновозможность превращается в исчислении вероятностей в равновероятность. Равновероятность элементарных исходов — всё тот же «закон инерции», всё то же парадоксальное строительство здания знания на фундаменте незнания, на фундаменте, прочность которого гарантирована именно абсолютностью незнания. Эта своеобразная апофатика оказывается лежащей и в основании теории вероятностей.

<p>§ 3. Научные теории бесконечности и апофатика</p>

Но наиболее ярким «репрезентантом» апофатики в науке являются различные теории бесконечности и вообще всё, что связано с бесконечностью. И это неслучайно. Бесконечность в науке есть как бы отражение идеи христианского (библейского) Бога. Для греческой античности, в лице её наиболее авторитетных представителей, категория бесконечного не может входить в науку. «Бесконечное не существует ни в космосе, ни в уме», — говорил Аристотель. Бесконечное сближается греческой мыслью с неоформленным, текущим, со становлением, стоящим на границе бытия и небытия: бесконечное деление отрезка, бесконечное увеличение числа и т. д.[142]. В силу этого бесконечное — если даже и признавать его существование — непознаваемо. Другими словами, отношение к бесконечному в греческой античности именно апофатическое.

С христианством в европейскую культуру приходит бесконечный Бог: всемогущий, всеведущий, всеблагой. В христианской теологии начинаются первые спекулятивные построения вокруг понятия бесконечности. Постепенно они проникают и в науку. Начинаются попытки катафатического подхода к бесконечности. Пока богословие, укоренённое в прямом духовном опыте богообщения, контролируемое соборным церковным сознанием, бдительно сохраняет трезвое представление о границах катафатического подхода, твёрдо помнит о непостижимости Божества в Нём Самом, спекулятивные построения, связанные с бесконечностью, не превосходят, так сказать, должной меры и соотносятся с традицией. Но со времени позднего средневековья ситуация в западном христианстве меняется. В богословии всё большую роль начинают играть отвлечённые рациональные построения (например, Николая из Кузы) с одной стороны, и в высшей степени нетрезвые мистические откровения — с другой (например, Мейстер Экхарт, Я. Беме и др). И у обеих этих линий всегда есть общий предмет для рассуждений: бесконечность. Поэтому возникающие в XVII столетии дифференциальное и интегральное исчисления совершенно неслучайны: почва для этих всходов уже подготовлена несколькими веками многообразных спекуляций о бесконечном. В то же время, дифференциальное и интегральное исчисления входят в науку достаточно «революционно», заглушая победными сообщениями о решении всё новых задач негромкие голоса скептиков, безуспешно пытающихся напомнить об апориях и парадоксах, неотделимых от понятия актуально бесконечного (Б.Паскаль, Дж. Беркли).

Перейти на страницу:

Похожие книги

Сочинения
Сочинения

Иммануил Кант – самый влиятельный философ Европы, создатель грандиозной метафизической системы, основоположник немецкой классической философии.Книга содержит три фундаментальные работы Канта, затрагивающие философскую, эстетическую и нравственную проблематику.В «Критике способности суждения» Кант разрабатывает вопросы, посвященные сущности искусства, исследует темы прекрасного и возвышенного, изучает феномен творческой деятельности.«Критика чистого разума» является основополагающей работой Канта, ставшей поворотным событием в истории философской мысли.Труд «Основы метафизики нравственности» включает исследование, посвященное основным вопросам этики.Знакомство с наследием Канта является общеобязательным для людей, осваивающих гуманитарные, обществоведческие и технические специальности.

Иммануил Кант

Философия / Проза / Классическая проза ХIX века / Русская классическая проза / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
1. Объективная диалектика.
1. Объективная диалектика.

МатериалистическаяДИАЛЕКТИКАв пяти томахПод общей редакцией Ф. В. Константинова, В. Г. МараховаЧлены редколлегии:Ф. Ф. Вяккерев, В. Г. Иванов, М. Я. Корнеев, В. П. Петленко, Н. В. Пилипенко, Д. И. Попов, В. П. Рожин, А. А. Федосеев, Б. А. Чагин, В. В. ШелягОбъективная диалектикатом 1Ответственный редактор тома Ф. Ф. ВяккеревРедакторы введения и первой части В. П. Бранский, В. В. ИльинРедакторы второй части Ф. Ф. Вяккерев, Б. В. АхлибининскийМОСКВА «МЫСЛЬ» 1981РЕДАКЦИИ ФИЛОСОФСКОЙ ЛИТЕРАТУРЫКнига написана авторским коллективом:предисловие — Ф. В. Константиновым, В. Г. Мараховым; введение: § 1, 3, 5 — В. П. Бранским; § 2 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 4 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 6 — В. П. Бранским, Г. М. Елфимовым; глава I: § 1 — В. В. Ильиным; § 2 — А. С. Карминым, В. И. Свидерским; глава II — В. П. Бранским; г л а в а III: § 1 — В. В. Ильиным; § 2 — С. Ш. Авалиани, Б. Т. Алексеевым, А. М. Мостепаненко, В. И. Свидерским; глава IV: § 1 — В. В. Ильиным, И. 3. Налетовым; § 2 — В. В. Ильиным; § 3 — В. П. Бранским, В. В. Ильиным; § 4 — В. П. Бранским, В. В. Ильиным, Л. П. Шарыпиным; глава V: § 1 — Б. В. Ахлибининским, Ф. Ф. Вяккеревым; § 2 — А. С. Мамзиным, В. П. Рожиным; § 3 — Э. И. Колчинским; глава VI: § 1, 2, 4 — Б. В. Ахлибининским; § 3 — А. А. Корольковым; глава VII: § 1 — Ф. Ф. Вяккеревым; § 2 — Ф. Ф. Вяккеревым; В. Г. Мараховым; § 3 — Ф. Ф. Вяккеревым, Л. Н. Ляховой, В. А. Кайдаловым; глава VIII: § 1 — Ю. А. Хариным; § 2, 3, 4 — Р. В. Жердевым, А. М. Миклиным.

Александр Аркадьевич Корольков , Арнольд Михайлович Миклин , Виктор Васильевич Ильин , Фёдор Фёдорович Вяккерев , Юрий Андреевич Харин

Философия