Читаем Сборник статей и публикаций 2012-2013 гг. В двух частях. Часть I полностью

К примеру, в правильной пятиконечной звезде, каждый сегмент делится пересекающим его сегментом в золотом сечении (т. е. отношение синего отрезка к зеленому, красного к синему, зеленого к фиолетовому, равны 1.618).


Рис. 3. Золотое сечение в пятиконечной звезде

Второе золотое сечение

Болгарский журнал «Отечество» опубликовал статью Цветана Цекова-Карандаша «О втором золотом сечении», которое вытекает из основного сечения и дает другое отношение 44: 56.

Такая пропорция обнаружена в архитектуре.

Деление осуществляется следующим образом. Отрезок АВ делится в пропорции золотого сечения. Из точки С восставляется перпендикуляр СD. Радиусом АВ находится точка D, которая соединяется линией с точкой А. Прямой угол АСD делится пополам. Из точки С проводится линия до пересечения с линией AD. Точка Е делит отрезок AD в отношении 56: 44.


Рис. 4. Построение второго золотого сечения


Рис. 5. Деление прямоугольника линией второго золотого сечения


На рисунке 5 показано положение линии второго золотого сечения. Она находится посередине между линией золотого сечения и средней линией прямоугольника.

Золотой треугольник (пентаграмма)

Для нахождения отрезков золотой пропорции восходящего и нисходящего рядов можно пользоваться пентаграммой.


Рис. 6. Построение правильного пятиугольника и пентаграммы


Для построения пентаграммы необходимо построить правильный пятиугольник. Способ его построения разработал немецкий живописец и график Альбрехт Дюрер. Пусть O – центр окружности, A – точка на окружности и Е – середина отрезка ОА. Перпендикуляр к радиусу ОА, восставленный в точке О, пересекается с окружностью в точке D. Пользуясь циркулем, отложим на диаметре отрезок CE = ED. Длина стороны вписанного в окружность правильного пятиугольника равна DC. Откладываем на окружности отрезки DC и получим пять точек для начертания правильного пятиугольника. Соединяем углы пятиугольника через один диагоналями и получаем пентаграмму. Все диагонали пятиугольника делят друг друга на отрезки, связанные между собой золотой пропорцией.


Рис. 7. Построение золотого треугольника


Каждый конец пятиугольной звезды представляет собой золотой треугольник. Его стороны образуют угол 360 при вершине, а основание, отложенное на боковую сторону, делит ее в пропорции золотого сечения.

Проводим прямую АВ. От точки А откладываем на ней три раза отрезок О произвольной величины, через полученную точку Р проводим перпендикуляр к линии АВ, на перпендикуляре вправо и влево от точки Р откладываем отрезки О. Полученные точки d и d1 соединяем прямыми с точкой А. Отрезок dd1 откладываем на линию Ad1, получая точку С. Она разделила линию Ad1 в пропорции золотого сечения. Линиями Ad1 и dd1 пользуются для построения «золотого» прямоугольника.

История золотого сечения

Принято считать, что понятие о золотом делении ввел в научный обиход Пифагор, древнегреческий философ и математик. Есть предположение, что Пифагор свое знание золотого деления позаимствовал у египтян и вавилонян.

И действительно, пропорции пирамиды Хеопса, храмов, предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого деления при их создании. Французский архитектор Ле Корбюзье нашел, что в рельефе из храма фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамзеса, пропорции фигур соответствуют величинам золотого деления. Зодчий Хесира, изображенный на рельефе деревянной доски из гробницы его имени, держит в руках измерительные инструменты, в которых зафиксированы пропорции золотого деления.

Греки были искусными геометрами. Даже арифметике обучали своих детей при помощи геометрических фигур. Квадрат Пифагора и диагональ этого квадрата были основанием для построения динамических прямоугольников.


Рис. 8. Динамические прямоугольники


Платон также знал о золотом делении. Пифагореец Тимей в одноименном диалоге Платона говорит: «Невозможно, чтобы две вещи совершенным образом соединились без третьей, так как между ними должна появиться вещь, которая скрепляла бы их. Это наилучшим образом может выполнить пропорция, ибо если три числа обладают тем свойством, что среднее так относится к меньшему, как большее к среднему, и, наоборот, меньшее так относится к среднему, как среднее к большему, то последнее и первое будет средним, а среднее – первым и последним.

Таким образом, все необходимое будет тем же самым, а так как оно будет тем же самым, то оно составит целое».

Перейти на страницу:

Похожие книги

Всё закончится, а ты нет. Книга силы, утешения и поддержки
Всё закончится, а ты нет. Книга силы, утешения и поддержки

«Всё закончится, а ты нет» – это книга-подорожник для тех, кто переживает темную ночь души. Для тех, кому нужна поддержка и утешение. И слова, на которые можно опереться.В новой книге Ольга Примаченко, автор бестселлеров «К себе нежно» и «С тобой я дома», рассказывает о том, за что держаться, когда земля уходит из-под ног. Как себе помочь, если приходится прощаться с тем, что дорого сердцу, – будь то человек, дом или ускользающая красота. Как прожить жизненные перемены бережно к себе – и вновь обрести опоры. Несмотря ни на что, жизнь продолжается, и в ней по-прежнему есть место мечтам, надежде и вере в лучшее.Эта книга – остров со множеством маяков, которые светят во все стороны. И каждый корабль, попавший в свой личный шторм, увидит именно тот свет, который ему нужен.В формате PDF A4 сохранён издательский дизайн.

Ольга Примаченко

Карьера, кадры / Самосовершенствование / Психотерапия и консультирование / Эзотерика / Образование и наука