Если рассматривать, скажем, систему, состоящую из камня и земли, на которой лежит камень, то сила сопротивления земли согласно закону Ньютона равна, но противоположна силе давления на нее камня, а общая сумма этих двух сил (с учетом знака) равна нулю. Именно по этой причине эта система находится в состоянии покоя. Если бы сила земли превысила силу камня, земля бы подбросила камень вверх, а если бы сила камня превысила силу земли – камень бы погрузился в землю (такое случается с метеоритными камнями, с чудовищной силой ударяющимися о землю).
Несложно представить себе систему, состоящую из многих взаимодействующих (движущихся в разных направлениях) тел, даже такую большую, как вся Вселенная, в которой моменты взаимодействующих между собой тел взаимно погашаются и их сумма равна нулю.
Как видим, и в законе сохранения количества движения, и в законе сохранения заряда константы равны нулю. Нет оснований думать, будто с законом сохранения энергии дело обстоит иначе. Во всяком случае, это должно быть справедливо в отношении свободной энергии, частными случаями которой являются энергия движения (кинетическая энергия) и электрическая энергия (энергия электрического поля, создаваемого зарядами). Это дает нам право предположить, что общее количество свободной энергии в изолированной системе равно нулю. Потому это количество и постоянно. Похоже, это единственное приемлемое решение для величины энергетической константы Вселенной.
Первое начало термодинамики
Давайте еще немного углубимся в физику, точнее в науку о движении теплоты –
Термодинамика изучает превращения энергии в различных явлениях, сопровождающихся тепловыми эффектами. А надо сказать, что тепловая форма энергии является базовой по отношению к другим – практически при любом переходе энергии из одного вида в другой некоторая часть энергии (порой – довольно значительная) выделяется в виде теплоты. Например, когда мы превращаем электрическую энергию в световую (включаем электролампочку), эта лампочка кроме света выделяет также и довольно много тепла, даже если это нам не требуется. Когда мы ту же электрическую энергию превращаем в механическую, например, пользуемся электрической дрелью, то двигатель дрели ощутимо нагревается, что приводит к его ускоренному износу. Но поделать с этим ничего нельзя. Даже создание холода в холодильнике не обходится без выброса в атмосферу тепла.
Тепловая энергия – универсальный вид энергии. Любой вид энергии в конечном счете превращается в тепло. Поэтому термодинамика и представляет для нас такой интерес.
Термодинамика основывается на опытных законах, которые называют
Первое начало термодинамики описывает тот очевидный факт, что при наличии разности потенциалов (энергетических уровней) энергия всегда перемещается в направлении от более высокого уровня к более низкому, от избытка к недостатку. Представьте себе водопад – резкий перепад уровня воды. В какую сторону течет вода? Конечно, с высокого уровня – на более низкий. При этом она совершает работу, которую можно использовать, например, заставив её крутить лопасти турбины и вырабатывать ток, на чём, собственно, основана идея любой гидроэлектростанции. Может ли вода двигаться в обратном направлении, снизу вверх? Конечно, не может.
Ну, это вода. Может быть, тепло ведет себя по-другому? Возьмем два предмета, имеющих различную температуру, например, горячий чай (температура 80 °С) и обычную чашку (температура комнатная, 20°С) и приведем их в соприкосновение, т. е. нальем чай в чашку. Что будет происходить? Через какое-то время мы заметим, что чай остыл, так что его можно пить, а чашка нагрелась. Очевидно, часть тепла перешла от чая к чашке. Могло ли быть по другому? Могла ли часть тепла, имевшаяся у чашки (все-таки 20 °С!) перейти к чаю, так, чтобы он вскипел, а чашка бы при этом охладилась до нуля? Нет, это уже похоже на фантастику. Тепло, как и вода, переходит всегда от более нагретого тела к менее нагретому, то есть с более высокого уровня на более низкий, и никогда иначе.