В этот момент Мелоэн и один из его студентов, Джон Блаха, отвлеклись на другое направление. Мелоэн хотел выяснить, какие части усиков полевой мухи чувствительны к ксилолу. Под микроскопом усики насекомого выглядят как невероятно сложные механизмы с отверстиями в кутикуле, которые ведут в полости, связанные с клетками рецепторов; внутренняя поверхность усиков оснащена разного рода проводами и вспомогательными клетками. Энтомологи достаточно хорошо продвинулись вперед в понимании того, какие части за что отвечают; для этого они затыкали разные отверстия микроскопическими капельками воска и проверяли, как действует обоняние мух. Мелоэн решил пойти дальше и на самом деле выяснил, как далеко по усику путешествует ксилол. В это время в Национальном бюро стандартов (НБС) создали прибор, сочетающий в себе микроскоп и рамановский спектроскоп, в котором лазер высвечивает конкретную точку и выдает сведения, какие молекулы вибрируют там, куда направлен микроскоп.
Наблюдение Джона Блахи
Блаха взял с собой мух и химические соединения и отправился с ними в НБС проводить дальнейшие эксперименты. Разумеется, он смог определить ксилол и другие молекулы в усике по их колебаниям, но в способности различных соединений проникать в усик нельзя было увидеть существенной разницы. Затем Блаха с волнением позвонил Мелоэну сообщить о странном наблюдении. Он искал рамановский спектр соединений в усике, и нечто привлекло его внимание. Соединения, которые привлекали мух,
Мелоэн решил проверить теорию Райта и начал собирать идеи. Один коллега предложил изотопы как элегантный способ изменения колебаний без изменения формы, но Мелоэн почувствовал, что использование изотопов аттрактантов может показаться неубедительным из-за извечной проблемы с примесями. Репелленты более распространены, чем аттрактанты, и, если небольшое количество репеллента в качестве примеси найдет способ проникнуть в аттрактант с изотопом-заменителем, эксперимент может дать нечеткие результаты. Поэтому он решил перевернуть проблему с ног на голову и заняться репеллентами. Он знал, что лавровый лист действует как репеллент на тараканов, и решил проанализировать экстракт лаврового листа, чтобы понять, какие химические вещества играют активную роль. Таких оказалось несколько, но 1,8-цинеол, распространенная молекула с запахом камфоры, оказалась наилучшим претендентом.
Он придумал оригинальный способ проверки отталкивающих свойств. Он сажал тараканов в большой стеклянный ящик, на дне которого располагал две перевернутые, как иглу, стеклянные колбы, по нижнему краю которых были сделаны проходы. Сверху каждой колбы свисали марлевые тампоны, недоступные для тараканов. В одной тампон был пропитан тестируемыми молекулами, в другой – без ничего. Затем он выключал свет, и тараканы получали возможность перемещаться как угодно по предоставленной территории, в том числе и знакомиться с запахами в каждом иглу. Потом включали свет – и тараканы бежали в укрытие. Выяснив ранее, в каком из иглу находится репеллент, а в каком – нет, эти сообразительные мелкие твари дружно прятались там, где не было неприятного для них запаха. А если выставлялись колбы без репеллента, тараканы равномерно прятались от света в обоих. Мелоэн проделал это с цинеолом, и почти все тараканы избегали его как чумы. Затем он взял дейтерированный цинеол – и они полностью его игнорировали, равномерно заполняя оба иглу.
Работа Мелоэна никак не отвечала на два фундаментальных вопроса – механизм воздействия и различные запахи энантиомеров.