Вытекающие из этого закона следствия описаны во многих учебниках по плаванию. Наиболее практическое пояснение можно встретить в книге «Наука о плавании» Джеймса Каунсилмена[2] (Counsilman, James. The Science of Swimming. Englewood Cliffs, NJ: Prentice-Hall, 1968):
Важное слово здесь – «квадратичный». Из уроков математики вы помните, что «в квадрате» означает «во второй степени». Очень важно понять закон квадратичной зависимости применительно к плаванию, потому что из него следует, что с увеличением скорости сопротивление воды возрастает не в арифметической, а в геометрической прогрессии.
Это означает, что, когда пловец развивает большие скорости, вопрос сопротивления воды становится все более и более актуальным. Возникает извечный вопрос о курице и яйце: что важнее – увеличение тяги или уменьшение сопротивления? Ответ дает закон квадратичной зависимости: тяга важнее. Увеличение сопротивления в геометрической прогрессии начинает беспокоить нас, только когда мы движемся на более высоких скоростях.
Вспомните велогонку «Тур де Франс». Когда разбивается пелотон и гонщики продолжают движение в одиночку? Не на равнине, когда скорость велика, а на горных участках, где скорость ниже. Если применить закон квадратичной зависимости к данной ситуации, то все становится понятно. Велосипедисты в голове пелотона на ровных участках часто развивают скорость до 30 миль в час, испытывая при этом огромное сопротивление воздуха. Все остальные велосипедисты могут спрятаться за лидерами и избежать сопротивления. Но как только возникают горы и скорость снижается, сопротивление, которое испытывают лидеры, становится намного ниже. В этот момент на первый план выходит сила. И здесь-то показывают всё, на что способны, именно лучшие велосипедисты. Драфтинг больше не дает преимуществ: чем круче уклон, тем ниже скорость, а чем ниже скорость, тем меньше (в квадрате!) сопротивление, которое испытывают лидеры гонки. На горных участках все велосипедисты оказываются, так сказать, в равных условиях.
Возвращаюсь к закону квадратичной зависимости применительно к плаванию. Вопрос минимизации сопротивления обоснованно встанет только в случае, если мы начнем движение вперед. Пловцам поэтому следует вкладывать энергию, целеустремленность и время в отработку тех элементов гребка, которые в первую очередь создают силу тяги. Так что 80 % времени вам следует посвящать именно отработке силы тяги – лучшие пловцы так и поступают.
Еще остались скептики?
Кто-то все еще мне не верит? И это после того, как мы только что обсудили закон квадратичной зависимости, закон убывающей отдачи и все остальное? Ладно, я готова продолжать бой до тех пор, пока не отправлю противника в нокаут. Вот еще несколько дополнительных аргументов в пользу того, что подтягивание в плавании – главное.
Подтягивание определяет и число гребков, и скорость, с которой мы их выполняем. Оно больше других аспектов плавательной техники влияет на эти два показателя.
Вспомните, как выглядят выдающиеся пловцы. Какова отличительная особенность их телосложения? Это плечи и развитые мышцы спины: плечи у них широкие, а фигуры – выраженно V-образные, верно? Здравый смысл между тем подсказывает, что если бы спортсмены так уж беспокоились об уменьшении сопротивления, то плечи и мышцы спины были бы у них не такие накачанные. И потом, откуда у них вообще взялись такие плечи и спины? Что-то мне подсказывает, что не от того, что целыми днями они выполняют упражнения на вытягивание и вращение бедрами.