Читаем Секреты наследственности человека полностью

Никто и никогда не видел пожилых бактерий. При их темпах и способах воспроизводства себе подобных говорить в данном случае о старении совершенно бессмысленно. Смерть в преклонном возрасте становится по-настоящему актуальным и обсуждаемым феноменом только у многоклеточных организмов, размножающихся половым путем. В самом деле: если жизненная программа выполнена — репродуктивный период закончился, потомство оставлено и тем самым опробован доставшийся от предков набор генов — то что же теперь делать с продолжающими жить родителями? Оставить их наслаждаться жизнью? Но они ведь только мешают новому поколению испытывать свою приспособленность к вечно меняющейся среде обитания…

Правильно! Надо активно прекратить неоправданное расходование ресурсов и отправить пожилых родственников в расход. Другими словами, на определенном этапе эволюции запрограммированная гибель «пожилых» многострочных стала феноменом, выгодным для процветания вида в целом. Раз так, то неизбежно должны были возникнуть и четкие механизмы, эту гибель обеспечивающие.


Прекрасный в этом плане пример демонстрирует совсем просто устроенное многоклеточное существо — крошечная нематода ценорабдитис (Caenorabditis elegans). Длина этого круглого червя едва достигает одного миллиметра, а общее количество слагающих его клеток абсолютно постоянно у всех взрослых особей — около трех тысяч (для сравнения: новорожденный крысенок состоит примерно из трех миллиардов клеток). Количество ДНК в каждой клетке ценорабдитиса всего лишь в двадцать раз больше, чем у средней бактерии. Время жизни этой нематоды поразительно скоротечно и составляет всего трое с половиной суток, что лишь в двести пятьдесят раз больше жизни кишечной палочки, которая при благоприятных условиях делится через каждые двадцать минут.

Однако палочка именно делится, то есть ее молекулярная фабрика продолжает успешно работать, регулярно удваивая свое клеточное хозяйство, а вот отложившая яйца нематода совершенно неизбежно умирает в конце своей коротенькой жизни. Ясно, что ни о каком старении за счет накопления возможных дефектов и повреждений в клетках в этом случае говорить не приходится.

К роковой черте ее подводит неизбежная, четкая и смертельная, как взгляд Азазелло, работа генов, семейство которых биологи называют «генами смерти». Продукт одного такого гена запускает работу второго, тот активирует третий, седьмой… а в конце хлоп! Дружная гибель всех клеток, и в результате кончина организма в целом. Такую запрограммированную клеточную смерть биологи и медики называют апоптозом. Собственно о старении говорить здесь не приходится. Какая уж тут дряхлость, когда тебе роду не более трех суток!


Американские ученые в 1988 г. сообщили, что им удалось обнаружить нематод с мутацией в гене age-l, которая удлиняла жизнь этих червей на 70 %. Выяснилось, что у мутантных особей повышен уровень антиоксидантов — веществ, активно уничтожающих свободные кислородные радикалы. Эти радикалы способны связываться практически с любыми химическими соединениями клеток и активно разрушать их. Однако этот механизм, влияющий на продолжительность жизни, не отменял, а лишь отсрочивал действие генов запрограммированной смерти нематод.

Если бы подобный четкий механизм ухода из жизни работал у высших позвоночных, программа нашего пенсионного обеспечения оказалась бы совершенно не нужной. Действительно, к чему откладывать на старость, если, к примеру, после сорока семи с половиной лет неизбежно последует быстрая и безболезненная смерть. Слава богу, этого не происходит, и может, действительно правы те геронтологи, которые говорят о феномене старости как о результате накопления всевозможных ошибок в работе клеток, из которых мы состоим? Существуют ли у человека вообще какие-либо генетические программы ограничения времени жизни его клеток?

Опыты Хайфлика

Еще в начале XX века нобелевскому лауреат у биологу Алексису Каррелю удалось выделить клетки человека из организма и культивировать их в стеклянных флаконах на питательной среде в течение 27 лет. Его опыты, вроде бы, свидетельствовали о том, что человеческие клетки потенциально бессмертны. Однако позже возникло подозрение, что с каждой новой порцией среды для культивирования во флаконы Карреля попадали новые, молодые клетки, и культура тем самым постоянно обновлялась за их счет.

Разобраться в этой запутанной ситуаций в начале 60-х годах решил профессор Стенфордского университета Леонард Хапфлик. Он выделил из легкого человеческого эмбриона клетки соединительной ткани — фибробласты. Точно так же, как Каррель, он поместил их в сосуды с питательной средой. На этот раз все предосторожности были тщательно соблюдены, и новые клетки попасть в сосуды не могли. Первое время дела шли успешно, и клетки прекрасно размножались в непривычных для них условиях «Для меня эти клетки все равно, что собственные дети», — говорил он интересовавшимся его опытами журналистам.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже