Ни один из факторов так неинтересен для экологов, как свет, отмечал Ю. Одум. Среди жизненно важных экологических факторов солнечный свет занимает особое место. Радиация Солнца породила жизнь на Земле. Биосферу можно рассматривать как продукт преобразования солнечной энергии в энергию живого вещества, т. е. биомассы всех организмов, населяющих нашу планету.
С физической точки зрения солнечная радиация состоит из волн разной длины. Лучистую энергию растения используют избирательно. При фотосинтезе они потребляют лучи с длиной волны от 380 до 740 нм. Область солнечного спектра, используемая растениями для фотосинтеза, получила название
Проходя расстояние от Солнца до поверхности Земли, солнечная радиация сильно изменяется. Одна часть лучей отражается и поглощается облаками и аэрозолями, другая — отбрасывается в виде рассеянного света. На внешней границе атмосферы Земли интенсивность солнечной радиации составляет 1,39 кВт/м2
(солнечная константа). До поверхности Земли доходит лишь около половины (47Коэффициент полезного действия поглощенной растениями солнечной энергии невелик. На фотосинтез используется лишь небольшая часть радиации, всего около 1,5%. У сельскохозяйственных культур КПД использования лучистой энергии обычно выше, чем у диких предков и сородичей. Так, на фотосинтез кормовая свекла использует 1,90 % поглощенной солнечной энергии, вика — 1,98, клевер — 2,18, картофель — 2,38, рожь — 2,42, пшеница — 1,68, овес — 2,74, лен — 3,61, люпин — 4,79 %. От эффективности использования ФАР зависит урожайность растений. Чем выше эффективность использования света в фотосинтезе, тем выше урожайность сельскохозяйственной культуры.
На поверхности земного шара свет распределен неравномерно. Интенсивность солнечной радиации зависит от географического расположения того или иного региона. Так, на севере из-за низкого солнцестояния освещенность местности относительно слабая, ниже, чем в регионах, расположенных южнее. На юге, в частности на экваторе, лучи Солнца падают на Землю отвесно, поэтому здесь интенсивность солнечной радиации достигает максимальных величин. Интенсивность освещения земной поверхности зависит от рельефа местности. Особенности природных условий того или иного региона земного шара влияют и на качество радиации, ее спектральный состав. Во многих регионах Северного'полушария
Рис. 5. Проникновение и распространение солнечной радиации в посеве подсолнечника(по В. Лархеру) |
создаются благоприятные условия для образования рассеянного света, богатого длинноволновыми лучами. На юге иная картина: здесь свет прямой, и в световом спектре преобладает коротковолновая радиация.
Интенсивность света и его спектральный состав — мощный ботанико-географический экологический фактор. Широтные различия в интенсивности и спектральном составе радиации во многом определили особенности формирования типов растительности, характерных для тундр, тайги, степей и других географических зон земного шара. Световой режим, сложившийся в том или ином регионе, выполняет роль фактора естественного отбора растений. Поэтому в одних местообитаниях преобладают светолюбивые растения (
Примером крайнего светолюбив может служить акация беловатая, широко распространенная в суданской саванне. Любопытно, что растение сбрасывает листья не в жаркий период года, а в сезон дождей. В дождливый период года, когда небо покрыто тучами, акация беловатая находится в состоянии светового голодания, что приводит к отмиранию листьев (Двора-ковский, 1983). В лесной зоне светолюбивых растений мало. Они встречаются лишь на свободных от леса местах. Здесь, на солнцепеке, растут мать-и-мачеха, лапчатка песчаная, другие растения-светолюбы. Пшеница, рожь, кукуруза, сахарная свекла, картофель, томат и некоторые иные виды культурных растений относятся к светолюбивым. Их посевы (посадки) размещают на открытых местообитаниях, т. е. на полях, в садах и огородах, расположенных обычно на территориях ранее сведенных лесов.