Читаем Семь главных игр в истории человечества. Шашки, шахматы, го, нарды, скрабл, покер, бридж полностью

«Я стал одним из… первых, кто работал в широкой области, которая позднее получила название искусственного интеллекта, – писал Сэмюэл в неоконченной и неопубликованной автобиографии. – Собственно говоря, я настолько увлекся написанием программы, которая вроде бы проявляет интеллект, что она занимала мои мысли почти в каждый свободный момент в течение всего периода работы в IBM, да и нескольких последующих лет тоже». В своей оценке он был не одинок. Как заметил один из специалистов по истории компьютеров, шашечная программа Сэмюэла, несомненно, была «первой самообучающейся компьютерной программой в мире» и «первым функционирующим искусственным интеллектом».

В IBM не возражали против ночных игр на заводе – на них смотрели как на испытание дорогостоящих машин. Но компания не опубликовала исследование Сэмюэла. Тогда, как и сейчас, многие боялись искусственного интеллекта. Продавцы IBM не говорили своим клиентам об исследованиях в этой области, проводившихся в компании, и не рассуждали о грядущих инновациях. Когда в 1959 году Сэмюэл, наконец, обнародовал свою работу, в ней был такой вывод: «Компьютер можно запрограммировать так, что он научится играть в шашки лучше того, кто написал программу». Сэмюэл мог бы пойти еще дальше. Компьютер можно запрограммировать так, что он будет играть в шашки как сам господь бог.

Так как же играет компьютер? Представьте, что вы стоите у подножия очень высокого дерева и смотрите вверх. Дерево – это совокупность всех возможных вариантов будущего игры. Ствол представляет собой ваш следующий ход, большой сук – какой-то возможный ход после этого, ветви поменьше – дальнейшие ходы, а бесчисленные мелкие веточки и листья наверху – продолжение возможных ходов в отдаленном будущем игры – эндшпили.

Люди смотрят на дерево снизу вверх и вспоминают о деревьях, на которые забирались, которые видели и о которых им раньше рассказывали друзья. У нас есть интуитивное, врожденное понимание того, какие ветви могут легко выдержать наш вес, а какие прогнутся, мы также знаем, какие веточки, судя по всему, крепкие. Мы помним, как падали и как забирались на верхушку. Мы фиксируем, какие ветви надежны, а какие опасны, и делимся этим знанием с окружающими. Мы забираемся на деревья, то есть играем в игры, опираясь на интуицию, опыт, специалистов и литературу.

А вот компьютеры не обладают такой интуицией в отношении дерева. Однако они способны добираться до всех частей кроны, причем очень быстро, точно колония муравьев. Это называется поиском. В каждой точке дерева, куда они попадают, муравьи производят небольшие вычисления, определяя качество этого места и присваивая ему баллы. Это называется оценкой. Перед тем как сделать ход в игре вроде шашек, компьютерные муравьи могут обежать миллионы мест на дереве, накапливая вычисления. Если какой-то путь наверх набирает более высокую оценку, компьютер направится именно туда. Компьютеры забираются на деревья – то есть играют в игры – с помощью поиска и оценки, поиска и оценки, поиска и оценки.

И поиск, и оценка – серьезные технические задачи. Начать с того, что в шашках существует 500 995 484 682 338 672 639 возможных позиций, то есть около 500 миллиардов миллиардов. Шеффер приводит такую аналогию: если бы Тихий океан высох и вам нужно было бы наполнить его с помощью маленькой чашки, то количество вливаемых порций было бы равно количеству возможных позиций в этой игре. Или такую: если бы площадь всей суши на нашей планете представляла совокупность возможных позиций в шашках, то каждой позиции соответствовала бы примерно одна сотая квадратного сантиметра. Таким образом, эффективность поиска имеет важнейшее значение. Если действовать путем простого перебора и смотреть на каждую из позиций в течение тысячной доли секунды примерно так, как машина Сэмюэла, то время, необходимое для просмотра их всех, превысило бы возраст Вселенной.

Оценка каждой позиции, когда мы на нее смотрим, – непростая задача. В шашках определенные особенности позиции являются желательными: хорошо иметь больше шашек, больше дамок, контролировать центральную часть доски и так далее. Есть и нежелательные особенности: расположение шашек по краям доски, незащищенная последняя горизонталь и так далее. Фокус в том, чтобы преобразовать всю эту мозаику особенностей и их сложные нелинейные математические взаимодействия в одно-единственное число, которое будет понятно вашей компьютерной программе.

Марион Тинсли опирался на интуицию и расчет, а также на способность осмысливать и усваивать опыт игры в шашки, накопленный теми, кто играл до него. Он мог взглянуть практически на любое дерево и найти оптимальный путь к его вершине с небольшими затратами энергии, характерными для человеческого мозга. Но в 1970 году, когда он после перерыва возобновил шашечную карьеру, муравьи уже размножались и набирали скорость.

Перейти на страницу:

Похожие книги

Маэстро
Маэстро

Ужасное, неназываемое гигантское чудовище проникло в Мензоберранзан и, покидая город, оставило за собой груды руин и трупов. Предвечный, узник Гаунтлгрима, жаждет вырваться на волю; Кэтти-бри и Громф отправляются в Лускан, к остаткам магического здания, которое может удержать огненное существо в плену. Последствия Сумерек, войны и нашествия демонов на Подземье чувствуются на землях Севера. И некоторые из этих последствий непоправимы.А Дзирт возвращается домой. Но не в Мифрил Халл. И не в Долину Ледяного Ветра. Он идет в Мензоберранзан. Бренор готов сопровождать его вместе с армией дворфов, чтобы покончить с ненавистным городом темных эльфов, но Дзирту нужно собственными глазами увидеть, что там происходит. Возможно, в армии дворфов нет необходимости. Возможно, Город Пауков уже пал под натиском демонов и их зловещего князя. Но даже если это правда, кто сказал, что демоны остановятся на этом?В романе «Маэстро», продолжении «Архимага», Дзирта ждет самый необычный поединок за всю его жизнь. Здесь поклонники дроу-следопыта, как обычно, найдут все: сражения, приключения, любимых героев, темных эльфов, чудовищ и демонических тварей.

Альберт Абрамович Валентинов , Вероника Бенони , Наталья Венгерова , Роберт Энтони Сальваторе , Святозар Мракославский , Юлия Волкодав

Фантастика / Хобби и ремесла / Самиздат, сетевая литература / Ужасы / Фэнтези / Современная проза