Читаем Семиотические исследования полностью

4. Развитие мышления объяснялось в такой схеме. На определенной ступени развития складываются «ситуации разрыва» (социальные напряжения, проблемы), которые разрешаются за счет изобретения знаков и перестройки исходной деятельности. Деятельность со знаками (но не только она) является условием формирования последующих ситуаций разрыва.

Приведу теперь пример семиотических исследований того периода, опустив ряд непринципиальных моментов (работа в ее исходном варианте относится к середине 60-х годов).

<p>§ 2. Семиотический анализ элементов древней «математики»</p>

Слово «математика» я взял в кавычки, поскольку счет, вычисление площадей и объемов и т. п. – действия, которые сегодня действительно относят к математике, в культуре Древнего Египта, Вавилона, Греции, Индии, Китая (именно этот период меня интересует) понимались иначе, прежде всего как сакральные знания. Я же хочу взглянуть на них как на знаки, решая при этом три основные задачи: описать типы «математических» знаний, понять, как они могли возникнуть и как развивались, в частности, как складывались системы знаков, образующих тело древней «математики».

Понятия, необходимые для семиотического анализа, я заимствую из содержательно-генетической логики. Здесь знаки рассматриваются, во-первых, как элементы структуры знания, во-вторых, как объекты, к которым применяются различные операции, в-третьих, как средства мыслительной деятельности (в последней, помимо средств, различаются задачи, объекты, процедуры, методы и продукты). Знания и знаки в семиотическом исследовании изображаются специальными схемами:

(схема 1)

(схема 2)

(схема 3)

Элемент (А) в этих схемах называется знаковой формой, элементы X и Y – объектами, (дельта) – действием сопоставления, (набла) – действием построения. Читаются эти схемы так: объект Х включается в действие сопоставления (т. е. сопоставляется по какому-либо отношению с общественно фиксированным эталоном); в результате возникает объективное содержание Х, которое выражается (стрелка вверх) в знаковой форме (А). Далее возможны разные варианты. Например, знак А относится обратно к объекту Х (стрелка вниз). Или с его помощью в действии создается новый объект Y, сходный по каким-то параметрам с объектом Х. Или знаковая форма (А) уже в качестве объекта А в свою очередь включается в действие сопоставления (здесь смена функции знака обозначена символом ->), результат сопоставления фиксируется в знаковой форме (С); «знак С» уже как объект преобразуется (операция ) в объект С', в свою очередь с помощью «знака С' можно, например, создать объект Y.

<p>Знаки-модели</p>

Действия с этими знаками по определенным параметрам сходны с действиями с объектами X и Y, которые эти знаки-модели замещают. Благодаря этому свойству знаки-модели используются вместо объектов, когда с последними по какой-либо причине невозможно действовать. В качестве примера могут быть приведены «числа» примитивных народов Австралии, Африки, Америки (а также иногда маленьких детей): пальцы, камешки, ракушки; письменная нумерация древних народов – | || |||… (так записывали числа 1, 2, 3 и т. д. древние египтяне и финикийцы), ……. (числа народов майя) (см.: 15, с. 22; 14, с.7).

Фактически характеристика некоторых знаков как знаков-моделей есть указание на способ их употребления, но вторичным образом она фиксирует и строение их знаковой формы (материала самого знака). Подобно объектам X и Y (т. е. подсчитываемым совокупностям предметов) «числа» древних народов представляют собой совокупности (пальцев, камешков, ракушек, черточек, точек). Их точно так же (точнее значительно легче, чем реальные предметы) можно делить на части, группировать, пересчитывать. Поэтому там, где по каким-либо причинам невозможно было действовать с реальными предметными совокупностями X и Y, делили, объединяли в группы, пересчитывали замещающие их «числа». На схеме употребление знака-модели М можно изобразить так:

(схема 4)

Здесь Х – объект, с которым нужно осуществить операцию (например, деление на равные части или сложение равных частей), но это почему-либо невозможно. Объект Х замещается знаком-моделью М, с которым действуют (операция – деление или сложение) вместо Х. В результате получается новый знак – число М', с помощью которого создается (отсчитывается) предметная совокупность Y с нужными свойствами (она в равное число раз больше или меньше предметной совокупности Х).

Перейти на страницу:

Похожие книги

Актуальность прекрасного
Актуальность прекрасного

В сборнике представлены работы крупнейшего из философов XX века — Ганса Георга Гадамера (род. в 1900 г.). Гадамер — глава одного из ведущих направлений современного философствования — герменевтики. Его труды неоднократно переиздавались и переведены на многие европейские языки. Гадамер является также всемирно признанным авторитетом в области классической филологии и эстетики. Сборник отражает как общефилософскую, так и конкретно-научную стороны творчества Гадамера, включая его статьи о живописи, театре и литературе. Практически все работы, охватывающие период с 1943 по 1977 год, публикуются на русском языке впервые. Книга открывается Вступительным словом автора, написанным специально для данного издания.Рассчитана на философов, искусствоведов, а также на всех читателей, интересующихся проблемами теории и истории культуры.

Ганс Георг Гадамер

Философия
Афоризмы житейской мудрости
Афоризмы житейской мудрости

Немецкий философ Артур Шопенгауэр – мизантроп, один из самых известных мыслителей иррационализма; денди, увлекался мистикой, идеями Востока, философией своего соотечественника и предшественника Иммануила Канта; восхищался древними стоиками и критиковал всех своих современников; называл существующий мир «наихудшим из возможных миров», за что получил прозвище «философа пессимизма».«Понятие житейской мудрости означает здесь искусство провести свою жизнь возможно приятнее и счастливее: это будет, следовательно, наставление в счастливом существовании. Возникает вопрос, соответствует ли человеческая жизнь понятию о таком существовании; моя философия, как известно, отвечает на этот вопрос отрицательно, следовательно, приводимые здесь рассуждения основаны до известной степени на компромиссе. Я могу припомнить только одно сочинение, написанное с подобной же целью, как предлагаемые афоризмы, а именно поучительную книгу Кардано «О пользе, какую можно извлечь из несчастий». Впрочем, мудрецы всех времен постоянно говорили одно и то же, а глупцы, всегда составлявшие большинство, постоянно одно и то же делали – как раз противоположное; так будет продолжаться и впредь…»(А. Шопенгауэр)

Артур Шопенгауэр

Философия