Читаем Сердце машины. Наше будущее в эру эмоционального искусственного интеллекта полностью

Нейросети – моделируемые по образцу человеческого мозга4 – строятся как соединения программных и аппаратных узлов (представляющих синапсы и нейроны) по слоям, которые постепенно улучшают решение для входной информации, например изображения. Некоторые слои скрыты, это значит, что они принимают входную информацию и производят расчеты, а решение передают на следующий слой, где процесс повторяется. В случае распознавания изображений это означает, что каждый последующий слой нейросети считывает признаки более высокого уровня. Наконец результат передается на выходной слой. Слои называются скрытыми, поскольку точно не известно, как происходят вычисления, ведь нейросети постепенно умнеют, используя методы машинного обучения с учителем и без. Определение оптимального количества нейронов, слоев, информации на входе и методов обучения составляет часть проблемы отладки сетей.

В общем, при большем количестве скрытых слоев сеть способна функционировать с большей точностью. (Хотя есть момент, при достижении которого точность начинает падать.) Дилемма стремления к большей точности состоит в том, что чем больше используется нейронов и слоев, тем больше требуется времени для вычислений. К счастью, практически в то же время, когда вышли статьи 2006 года, стали более доступными и дешевыми графические процессоры. С ними удалось на порядок ускорить обучение нейросетей, поскольку сжатие изображений, на которое раньше уходили недели, теперь можно было выполнить за несколько дней или даже часов. Различные подходы улучшили техники глубинного обучения, в том числе ограниченную машину Больцмана и рекуррентную нейронную сеть. Улучшенные алгоритмы глубинного обучения использовались во многих разновидностях распознавания образов. Прогресс в скорости расчетов привел к значительным успехам искусственного интеллекта в течение последнего десятилетия. Например, технология DeepFace, используемая в социальной сети Facebook, способна распознавать человеческие лица с точностью до 97 %. В 2012 году команда ученых Торонтского университета по исследованию искусственного интеллекта, в которую входили Хинтон и двое его студентов, победила в соревновании между исследовательскими группами по широкомасштабному распознаванию образов в базе данных. Их нейросеть на основе глубинного обучения не оставила соперникам ни одного шанса на победу5. Совсем недавно компания Google DeepMind использовала техники глубинного обучения для разработки ИИ, играющего в го, под названием AlphaGo. Программа AlphaGo обучалась самостоятельно при помощи базы данных, в которую были занесены тридцать миллионов записанных ходов из игр уровня эксперта. В марте 2016 года AlphaGo выиграл у гроссмейстера по го мирового уровня Ли Седоля четыре партии из пяти. Игра в го считается более сложной для искусственного интеллекта, чем игра в шахматы. Разработчики ИИ не ожидали игры на таком уровне еще по крайней мере в течение десятилетия.

Метод обучения не менее важен, чем используемые алгоритмы. Вот почему компании Affectiva пришлось изменить код приложения FaceSense. Ведь в обучении первоначального приложения участвовало относительно мало исследователей. Как только была завершена новая система, Affectiva запустила пилотный проект, в котором рекламный ролик Супербоула[1] транслировали зрителям, давшим согласие на участие в проекте, а выражение их лиц при просмотре анализировалось через веб-камеру. Таким образом команда эль Калиуби получила результаты, необходимые для переобучения системы, на этот раз – на примерах подлинных реакций реальных людей. Дополнительное изучение рекламы и другого медиаконтента с участием зрителей позволило собрать дополнительные данные о выражениях лиц реальных людей. Это было крайне важно. Система училась распознавать трудноуловимые нюансы выражений лиц. Оттенки были настолько незаметными, что даже хороший актер не смог бы изобразить выражение лица человека, по-настоящему переживающего ту или иную эмоцию. Чем больше было образцов эмоциональных реакций на рекламные ролики, тем умнее становилась система. Вот как объяснила это эль Калиуби в своем основном докладе.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука