Читаем SETI: Поиск Внеземного Разума полностью

Среди переменных звезд особенно интересны звезды, которые периодически меняют свой блеск (их часто называют правильными переменными). В зависимости от причин изменения блеска, они делятся на два типа: затменные переменные и физические переменные. Затменные переменные звезды являются двойными, т. е. каждая такая звезда, на самом деле, представляет собой систему двух близко расположенных гравитационно связанных звезд, которые из-за близкого расстояния между ними воспринимаются даже при наблюдении в телескоп, как одна звезда. Обращаясь вокруг общего центра тяжести, эти звезды попеременно затмевают одна другую, чем и объясняются периодические изменения блеска. Примером такой системы является звезда Алголь (β Персея), переменность которой была обнаружена еще в средние века арабскими астрономами. Блеск ее меняется с периодом 2 суток 20 часов 49 минут.

У физических переменных звезд периодические изменения блеска вызываются пульсациями их поверхности. Эти звезды периодически сжимаются и расширяются. При расширении температура поверхности звезды падает, а при сжатии увеличивается, этим и объясняются колебания блеска. Примером такой пульсирующей звезды является δ Цефея. По ее имени все подобные пульсирующие звезды получили название цефеиды. Периоды цефеид составляют от нескольких часов до нескольких недель. Цефеиды играют исключительную роль в астрономии. Дело в том, что их светимость и период изменения блеска связаны линейной зависимостью. Используя эту зависимость, можно, определив из наблюдений период цефеиды, найти ее светимость. А зная светимость и видимую звездную величину, можно оценить расстояние до цефеиды и, следовательно, до того объекта (звездного скопления, галактики), в котором она находится. Это один из наиболее надежных методов определения расстояний во Вселенной.

Помимо пульсирующих звезд (цефеид), существует большой класс неправильных переменных звезд, которые отличаются непериодическими (неправильными) часто быстрыми и сильными изменениями блеска. Неправильные переменные также относятся к типу физических переменных звезд. Изменение их блеска, по-видимому, вызываются бурными, взрывными процессами, протекающими в их атмосферах. К числу таких звезд относятся недавно сформировавшиеся молодые звезды типа T Тельца, которые отличаются быстрыми неправильными изменениями блеска, а также вспыхивающие звезды типа UV Кита. Последние характерны гем, что у них блеск менее, чем за одну минуту может возрасти в десятки раз, а затем за 10-15 минут падает до первоначальной величины. Во время таких вспышек выделяется энергия, которая на один-два порядка (т. е. в 10-100 раз) превосходит энергию сильных хромосферных вспышек на Солнце.

Совершенно другой масштаб явлений связан со вспышками новых и сверхновых звезд. Новые звезды во время вспышки за несколько дней увеличивают свою светимость в тысячи и даже миллионы раз (в среднем, приблизительно в 10 тыс. раз). Обычно это слабые звезды, которые не видны невооруженным глазом[102]. Но во время вспышки, когда блеск их возрастает в тысячи раз, некоторые из них (не очень далекие) можно видеть даже невооруженным глазом. На небе, где до этого ничего не было видно, появляется новая звезда, отсюда и название — новая. Примером может служить очень яркая новая звезда, которая вспыхнула внезапно в августе 1975 г. в созвездии Лебедя, вызвав сильное волнение в астрономическом мире. Несколько дней она была сравнима по блеску с самыми яркими звездами этого красивого созвездия и была хорошо видна невооруженным глазом. Но затем ее светимость начала падать, звезда стала слабеть и вскоре совсем исчезла из виду, а созвездие приняло свой обычный вид.

В чем причина вспышек новых звезд? Наблюдения показали, что вокруг новой звезды после вспышки образуется расширяющаяся газовая оболочка. Кроме того, было установлено, что новые звезды представляют собой тесные двойные системы. Одним из компонентов этой системы является обычная звезда, а другим — белый карлик. Из-за очень близкого расположения компонентов вещество обычной звезды под действием притяжения белого карлика непрерывно перетекает на него. Падая с большой скоростью на поверхность плотной звезды, газовый поток нагревает белый карлик. Когда захваченная масса газа (водорода) достигает критической величины (~ 1030 г), температура во внутренних слоях белого карлика увеличивается настолько, что там начинаются термоядерные реакции. Быстрое выделение энергии приводит к взрыву, в результате которого внешние слои белого карлика отрываются от него, образуя расширяющуюся газовую оболочку. Общая энергия, выделяемая при взрыве, достигает 1040 Дж. Этот процесс мы и наблюдаем как вспышку новой. После взрыва процесс перетекания вещества возобновляется, что приводит к повторным вспышкам. Интервал между вспышками составляет порядка 1000 лет, но иногда бывает значительно короче.

Перейти на страницу:

Похожие книги

История космического соперничества СССР и США
История космического соперничества СССР и США

Противостояние СССР и США, начавшееся с запуска Советским Союзом первого спутника в 1957 году и постепенно вылившееся в холодную войну, послужило причиной грандиозных свершений в области освоения космоса. Эта книга включает в себя хронику как советских, так и американских космических исследований и достижений, подробное описание полета Найла Армстронга и База Олдрина на Луну, а также множество редких и ранее не опубликованных фотографий. Авторы книги — Вон Хардести, куратор Национального Смитсонианского аэрокосмического музея, и Джин Айсман, известный исследователь и журналист, показывают, каким образом «параллельные исследования» двух стран заставляли их наращивать темпы освоения космоса, как между США и СССР назревал конфликт, в центре которого были Джон Кеннеди и Никита Хрущев. Это история освоения космоса, неразрывно связанная с историей противостояния двух великих держав на Земле.

Вон Хардести , Джин Айсман

Астрономия и Космос / История / Технические науки / Образование и наука