Первую космологическую модель, опирающуюся на ОТО, построил сам Эйнштейн в 1917 г. Исходя из господствовавших в то время представлений о неизменности Вселенной, Эйнштейн искал стационарное решение, в котором расстояние между любыми двумя точками в пространстве и другие параметры Вселенной не меняются со временем. Однако уравнения общей теории относительности не давали такого решения. Чтобы избежать этой «неприятности», Эйнштейн ввел в свои уравнения дополнительную величину Λ-член (лямбда-член), который описывает действующие во Вселенной гипотетические силы отталкивания. Подобно силам гравитации, эти космологические силы отталкивания носят универсальный характер, т. е. они не зависят от свойств тел, а зависят только от их взаимного расстояния. Но в отличие от сил гравитации они не убывают, а, напротив, возрастают с расстоянием, увеличиваясь пропорционально
Мир Эйнштейна оказался стационарным, но при этом он обладал необычными геометрическими свойствами. Будучи безграничным (мы могли бы двигаться в этом мире в любом направлении сколь угодно долго и никогда не вышли бы за его предел), он имеет конечный объем. Геометрия Евклида в этом мире неприменима, здесь действует геометрия Римана. Это замкнутый мир — мир постоянной положительной кривизны. Аналогом такого трехмерного мира среди двумерных многообразий может служить поверхность сферы. Она замкнута и безгранична; двигаясь вдоль се поверхности, двумерное существо никогда не выйдет за ее пределы. Между тем поверхность сферы конечна, она равна 4π
Принципиальным недостатком модели Эйнштейна, как было обнаружено позже, является ее неустойчивость: малейшее изменение параметров приводит к тому, что Вселенная выходит из равновесия и больше не возвращается в это состояние. Подобные системы не могут реализоваться в Природе. В дальнейшем Эйнштейн сам отказался от своей модели и даже считал ее самой большой ошибкой в своей жизни. Но введенные им космологические силы отталкивания сыграли очень важную роль в космологии, хотя значение их не сразу было оценено.
Силы отталкивания не зависят от плотности вещества во Вселенной. Они будут действовать и при отсутствии вещества — в вакууме. Поэтому их называют еще силами гравитационного отталкивания вакуума. Модель Вселенной, в которой, плотность вещества ничтожно мала — так называемая «пустая» модель была рассмотрена голландским астрономом В. де Ситтером сразу после появления модели Эйнштейна, в том же 1917 г. В «пустой» Вселенной действуют только силы отталкивания (силами тяготения вещества можно пренебречь), поэтому такая Вселенная будет расширяться. Причем поскольку силы отталкивания пропорциональны расстоянию, то и скорость взаимного удаления частиц вещества в «пустой» Вселенной (а под такими частицами можно подразумевать целые галактики) будет пропорциональна расстоянию. Это и есть закон Хаббла. Модель де Ситтера, в силу присущих ей «экзотических» свойств (на которых мы пока останавливаться не будем), практически не использовалась в космологии. И только спустя много десятилетий выяснилось, что с ее помощью можно описать самые ранние этапы развития Вселенной.