Читаем SETI: Поиск Внеземного Разума полностью

Максимум энергии реликтового излучения приходится на длину волны около 1 мм, а распределение энергии по спектру соответствует чернотельному излучению с температурой около 3 К. Как уже отмечалось, реликтовое излучение равномерно заполняет все пространство. В современную эпоху плотность энергии реликтового излучения составляет приблизительно 5 • 10-13 эрг/см3, энергия одного фотона около 10-15 эрг, следовательно, в одном кубическом сантиметре содержится 500 фотонов реликтового излучения. Это очень большая величина. Для сравнения напомним, что концентрация атомов водорода — самого распространенного элемента, в котором сосредоточена практически вся «вещественная» масса Вселенной, составляет 3 • 10-7 см-3 (один атом водорода или один протон на несколько кубических метров). Следовательно, отношение числа фотонов к числу частиц вещества порядка 109,т. е. на каждый атом вещества приходится миллиард реликтовых фотонов. Согласно соотношению Эйнштейна эквивалентности массы и энергии (Е = тс2), плотности энергии реликтового излучения εизл = 5 • 10-13 эрг/см-3 соответствует плотность массы ρ

изл = 5 • 10-34 г/см3, что приблизительно в 1000 раз меньше, чем плотность массы обычного вещества ρвещ = 3 • 10-31 г/см3. Таким образом, хотя по числу частиц реликтовых фотонов в миллиард раз больше, чем частиц вещества, они дают вклад в плотность Вселенной в 1000 раз меньший. Эго относится к современной эпохе. Но так было не всегда. Дело в том, что при расширении Вселенной концентрация частиц и плотность вещества убывает пропорционально a-3 (напомним, что а — масштабный фактор); концентрация фотонов также убывает пропорционально а-3, но, помимо этого, из-за красного смещения частота излучения и, следовательно, энергия (E = hv) каждого фотона убывает как a
-1. Значит, плотность излучения убывает пропорционально a-4, т. е. быстрее, чем для вещества. Отношение ρвещизл a(t). В современную эпоху оно равно 103, но с течением времени, по мере возрастания масштабного фактора из-за расширения Вселенной, эта величина будет расти. Напротив, в прошлом отношение ρвещизл было меньше, чем сейчас. В эпоху, когда масштабный фактор (а значит, и размер Метагалактики) был в 1000 раз меньше современного значения, плотность вещества равнялась плотности излучения. Это соответствует эпохе, когда с начала расширения Вселенной прошло около 300 000 лет. При t > 3 • 105 лет ρ
вещ > ρизл , плотность Вселенной определяется веществом; этот период развития Вселенной, в который живем и мы с вами, называется эрой вещества. При t < 3 • 105 лет ρизл > ρвещ , плотность Вселенной определяется излучением; соответствующая эра в развитии Вселенной называется эрой излучения.

Выше речь шла о плотности вещества и излучения. Что касается отношения числа фотонов к числу частиц вещества, то, поскольку концентрация и тех и других с расширением Вселенной падает как а-3, отношение nфот/nнукл

со временем не меняется и равно 109. Возникает вопрос — почему это отношение столь велико? Ведь, если в горячей Вселенной на раннем этапе все частицы находились в равновесии, то число частиц разного типа должно было быть примерно равным. Но как только мы задумываемся над этим вопросом, возникает другой, гораздо более важный вопрос — а почему, вообще, существует вещество в нашей Вселенной? Ведь если когда-то все частицы находились в равновесии, то число частиц должно было равняться числу античастиц. Почему же тогда образовалось только вещество, куда делось антивещество? Конечно, для нас это обстоятельство весьма благоприятно, ибо если бы во Вселенной существовало в равных количествах вещество и антивещество, то в какой-то момент оно должно было аннигилировать, и тогда весь Мир состоял бы только из излучения. Разгадка этих проблем, как оказалось, кроется в самых ранних этапах эволюции Вселенной, когда после сингулярности прошли ничтожные доли секунды.

Как близко можно подойти к сингулярности, двигаясь назад во времени, и как определить условия в ранней Вселенной? Теория горячей Вселенной дает простые соотношения для масштабного фактора, плотности и температуры в любой момент времени для ранней Вселенной:

или:


Здесь t — время в секундах, отсчитываемое от сингулярности, t0 — современный момент времени.

В своей замечательной книге «Первые три минуты»[138], изданной в 1977 г., С. Вайнберг начинает историю Вселенной с момента t = 0,01 с, когда температура составляла 1011 К (в 10 тыс. раз выше, чем в недрах Солнца). Современные космологи идут гораздо дальше, они начинают с момента t = 3 • 10-44с. Это так называемое планковское время. Дальше к сингулярности двигаться уже невозможно, ибо здесь начинают сказываться квантовые эффекты, и привычное нам понятие времени теряет смысл. Мы начнем описание истории горячей Вселенной с момента t = 10-34с; более ранний период будет рассмотрен в следующем пункте.

Перейти на страницу:

Похожие книги

История космического соперничества СССР и США
История космического соперничества СССР и США

Противостояние СССР и США, начавшееся с запуска Советским Союзом первого спутника в 1957 году и постепенно вылившееся в холодную войну, послужило причиной грандиозных свершений в области освоения космоса. Эта книга включает в себя хронику как советских, так и американских космических исследований и достижений, подробное описание полета Найла Армстронга и База Олдрина на Луну, а также множество редких и ранее не опубликованных фотографий. Авторы книги — Вон Хардести, куратор Национального Смитсонианского аэрокосмического музея, и Джин Айсман, известный исследователь и журналист, показывают, каким образом «параллельные исследования» двух стран заставляли их наращивать темпы освоения космоса, как между США и СССР назревал конфликт, в центре которого были Джон Кеннеди и Никита Хрущев. Это история освоения космоса, неразрывно связанная с историей противостояния двух великих держав на Земле.

Вон Хардести , Джин Айсман

Астрономия и Космос / История / Технические науки / Образование и наука