Читаем SETI: Поиск Внеземного Разума полностью

Проблема поиска существенно упрощается, когда мы переходим к поиску сигналов от цивилизаций II и III типа по Кардашеву. Располагая гигантской мощностью (1026—1037 Вт), такие цивилизации могут вести непрерывную изотропную (или всенаправленную) передачу сигналов в очень широкой полосе частот, обеспечивая даже при этом условии их обнаружение на больших расстояниях. Это сразу исключает выбор по направлению для передающей ВЦ. Поиск ведет только цивилизация, которая ищет сигналы. Если она построит систему обнаружения, которая перекроет все направления в пространстве (всенаправленная система обнаружения), то сигнал непрерывно будет попадать в одну из приемных антенн. Заметим, что число антенн в системе обнаружения и размер каждой из них меньше, чем при приеме сигнала от цивилизаций I тина, так как в данном случае речь идет о приеме очень мощных сигналов. Исключается также поиск по времени, поскольку передающая ВЦ излучает непрерывно. Наконец, практически исключается поиск по частоте. Действительно, полоса частот передатчика для подобных цивилизаций может достигать 109—1011 Гц, что сопоставимо с шириной оптимального диапазона волн (см. ниже). Значит, если правильно выбрать диапазон, то приемник, работающий в этом диапазоне, сможет обнаружить сигнал без всякого поиска по частоте.

Как определить оптимальный диапазон? Для рассматриваемых широкополосных сигналов невозможно связывать его с какой-то определенной радиолинией, например, с линией 21 см, полоса которой составляет сотые доли процента от предполагаемой полосы сигнала. Кардашев, как и Дрейк, предложил вести поиск в диапазоне, где шумы минимальны и, тем самым, обеспечиваются наилучшие условия обнаружения сигнала. При этом он, следуя, по существу, тем же соображениям, что и Дрейк (принцип технического совершенства) считал необходимым принимать во внимание лишь принципиально неустранимые источники шума. Одним из таких источников, как мы видели (§ 1.2), является галактическое радиоизлучение. В качестве другого источника Дрейк рассматривал излучение атмосферы. Но его нельзя считать принципиально неустранимым, так как цивилизация может вынести приемную антенну за пределы атмосферы. Поэтому Кардашев не стал принимать во внимание этот источник шума, т. е. здесь он пошел дальше Дрейка, последовательно проводя «принцип технического совершенства цивилизаций». Вместе с тем, он учел еще один важный фактор — квантовые флуктуации.

Предположим, что отсутствуют все источники шума, включая излучение фона. Казалось бы в этом случае, раз нет шума, то для передачи единицы информации можно затратить сколь угодно мало энергии. Однако это не так. Вследствие квантовой природы электромагнитного излучения количество информации пропорционально числу излучаемых фотонов (в пределе каждый квант, каждый фотон несет один бит информации). Следовательно, энергия, затрачиваемая на один бит, не может быть меньше, чем энергия одного кванта (практически, она значительно больше, но пропорциональна hν). Это эквивалентно наличию шума с температурой Tq=hν/k (h — постоянная Планка, к — постоянная Больцмана, ν — частота сигнала). Чем больше частота сигнала, тем больше энергия кванта и тем, стало быть, выше температура квантового шума.

На рис. 1.4.1 приведен спектр шумов за пределами земной атмосферы по Кардашеву. В низкочастотной области спектра шумы определяются галактическим фоном, в высокочастотной области — квантовыми флуктуациями. Сплошная линия соответствует наблюдению в направлении на центр Галактики, она имеет минимум в области 1010 Гц (длина волны 3 см). Штриховая линия соответствует наблюдению в направлении на полюс Галактики, она имеет минимум на частоте 3 • 109 Гц (длина волны 10 см). В целом весь широкий диапазон спектра 109 ÷ 1011 Гц, где обеспечивается низкий уровень шума, можно считать оптимальным для межзвездной связи. Правда, здесь не учтено реликтовое излучение, которое было открыто позже, после появления работы Кардашева, но его учет качественно не меняет картину, если ограничиться рассмотрением радиодиапазона (см. ниже рис. 7.2.1).

Рис. 1.4.1. Спектр шумов за пределами земной атмосферы (без учета реликтового фона). Сплошная линия соответствует наблюдению в направлении на центр Галактики, штриховая — в направлении на полюс Галактики

Перейти на страницу:

Похожие книги

История космического соперничества СССР и США
История космического соперничества СССР и США

Противостояние СССР и США, начавшееся с запуска Советским Союзом первого спутника в 1957 году и постепенно вылившееся в холодную войну, послужило причиной грандиозных свершений в области освоения космоса. Эта книга включает в себя хронику как советских, так и американских космических исследований и достижений, подробное описание полета Найла Армстронга и База Олдрина на Луну, а также множество редких и ранее не опубликованных фотографий. Авторы книги — Вон Хардести, куратор Национального Смитсонианского аэрокосмического музея, и Джин Айсман, известный исследователь и журналист, показывают, каким образом «параллельные исследования» двух стран заставляли их наращивать темпы освоения космоса, как между США и СССР назревал конфликт, в центре которого были Джон Кеннеди и Никита Хрущев. Это история освоения космоса, неразрывно связанная с историей противостояния двух великих держав на Земле.

Вон Хардести , Джин Айсман

Астрономия и Космос / История / Технические науки / Образование и наука