Источник сигнала в схеме ОК, так же, кстати, как и в схеме ОЭ, включен в цепь, по которой проходит ток базы
Можно сказать, что «в общем плане» схема ОК, которая усиливает ток, но не усиливает напряжение, ничем не хуже схемы ОБ, которая усиливает напряжение, но не усиливает ток. Однако эта разница — ток вместо напряжения — приводит к резкому различию входного и выходного сопротивления схем ОБ и ОК. Схема ОБ обладает очень низким входным и очень высоким выходным сопротивлением (рис. 56, 58), а схема ОК — очень высоким входным сопротивлением и сравнительно низким выходным.
То, что схема ОК имеет высокое входное сопротивление в упрощенном виде, объясняется так: ток базы, как обычно, мал, входное напряжение стало довольно большим, а это значит, что входное сопротивление схемы ОК велико. Практически оно составляет сотни килоом.
Значительно меньше оказывается выходное сопротивление, — показывающее, как меняется в нагрузке сквозной ток при изменении напряжения между эмиттером и коллектором. Динамическое выходное сопротивление обычно составляет несколько сотен или десятков ом.
На этом, пожалуй, можно закончить рассказ о том, как в транзисторных усилителях решается проблема «2 + 2 = 3» и как три разных ее решения дают разные, со своими достоинствами и недостатками, результаты (рис. 74). Сравнение трех основных схем транзисторных усилителей ОБ, ОЭ и ОК говорит о том, что, хотя «по сумме многоборья» на первое место выходит схема с общим эмиттером, две остальные имеют свои собственные, никем из конкурентов не побитые рекорды.
Рис. 74.
Сейчас трудно определить, кто первый придумал этот заголовок — «Как читать радиосхемы», — но можно с уверенностью сказать, что ему уже не один десяток лет. Под таким заголовком вышло множество плакатов, статей и книжек, и, по-видимому, всякий, кто в итоге все же научился читать схемы, начинал именно с одного из таких пособий.
К сожалению, довольно часто попытка научить чтению радиосхем не идет дальше рассказов о самой азбуке — о тех условных обозначениях, с помощью которых на бумаге изображаются конденсатор, резистор или переключатель. Не зная азбуки, читать нельзя — это факт. Но знание азбуки, знание условных обозначений, представляется лишь ничтожно малой частью того, что нужно для чтения радиосхем.
Чтобы прочесть схему, чтобы по запутанному чертежу быстро представить себе сложное электронное устройство и все происходящие там процессы, нужно многое знать и уметь. И, конечно, прежде всего нужно знать законы электрических цепей и уметь применять их при разборе конкретных схем.
Прежде чем учиться читать конкретные, практические схемы, полезно познакомиться с некоторыми общими, абстрактными решениями, с некоторыми принципами построения схем. Один из таких принципов — это разделение цепей постоянного и переменного тока, которое осуществляется, например, для того, чтобы элементы этих цепей не оказывали вредного влияния друг на друга. Сейчас на примере входных и выходных цепей транзисторного усилителя мы попытаемся выяснить, чем вызвано, что дает и как осуществляется такое разделение. Но еще перед этим придется попутно решить небольшую задачу, связанную с питанием самого транзистора.
До сих пор в наших схемах работало два источника постоянного тока — коллекторная батарея
На рис. 75 приведены три упрощенные схемы, показывающие, каким образом коллекторная батарея практически может выполнять работу по совместительству — как она может одновременно с питанием коллекторной цепи еще и создавать смещение в схеме ОЭ (листок