К первой катушке (ее называют первичной обмоткой) подводится переменное напряжение, создающее переменный ток, под действием которого возникает переменное магнитное поле. Оно охватывает витки второй катушки (ее называют вторичной обмоткой) и наводит в ней переменное напряжение (если не учитывать потери, можно говорить о наведенной э.д.с.), под действием которого в цепи появляется переменный ток. Обратите внимание, как часто повторяется здесь слово «переменный», — напряжение во вторичной обмотке наводится только при изменении магнитного поля. Иногда об этом говорят так: «Постоянный ток не трансформируется».
Система из двух или нескольких связанных магнитным полем катушек— это и есть трансформатор. В дальнейшем мы будем говорить о трансформаторах, где все катушки связаны очень сильно — они находятся на общем стальном сердечнике. Соотношение токов и напряжений в обмотках определяется коэффициентом трансформации n
. Трансформатор повышает напряжение, если n > 1, и понижает, если n < 1.Все это, разумеется, условно: трансформатор — машина обратимая, он может быть и понижающим и повышающим в зависимости от того, к каким обмоткам вы подключите генератор и нагрузку. Очень распространены трансформаторы с несколькими обмотками, дающие несколько различных напряжений (12, з). Диаметр провода для обмоток выбирают с учетом проходящего по ним тока (табл. 11).
Мощность Р1
, потребляемая трансформатором, а значит, и ток I1 в первичной обмотке зависят от той мощности Р2, которую потребляет нагрузка Rн. Если, например, уменьшить Rн, то есть увеличить I2 , то одновременно возрастет общая потребляемая мощность Р1 и ток I1. Эту последнюю зависимость удобно выражать с помощью условного сопротивления R'н (12, а, е), которое как бы вносится в первичную цепь из вторичной. Если трансформатор повышающий, то R'н < Rн, а если понижающий, то к R'н > Rн. Любой короткозамкнутый виток или группа витков представляют собой недопустимо большую нагрузку и могут вывести из строя весь трансформатор. При разомкнутой вторичной обмотке (холостой ход) трансформатор практически ничего не потребляет.Пример.
Дано: обмотка I — 1200 витков; обмотка II — 60 витков; U1 = 120 в; Rн = 10 ом.Находим: n
= 0,05; U2 = 6 в; I1 = 0,005 а; I2 = 0,1 а; P1 ~= Р2 = 0,6 вт. Число витков на 1 в — 10.Трансформатор, в котором роль вторичной обмотки II
выполняет часть первичной обмотки I, называется автотрансформатором (12, и). Часто в автотрансформаторе (а также в первичной обмотке трансформатора) делают несколько отводов, для того, чтобы на него можно было подавать несколько различных напряжений. Это, в частности, удобно, когда трансформатор должен работать от сети с изменяющимся напряжением. Секция с большим числом витков соответствует большему напряжению. Коэффициент n для автотрансформатора определяется так же, как и для трансформатора.13.
Во многих цепях электронных устройств протекает пульсирующий ток. Величина его меняется, как у переменного, а направление остается неизменным, как у постоянного. Чтобы получить пульсирующий ток, можно использовать два генератора — постоянного и переменного тока.14.
Независимо от того, каким способом был создан пульсирующий ток, можно довольно просто разделить его основные составляющие — постоянную I0 и переменную I~. Для этого применяют электрические фильтры — цепи, где эти составляющие встречают разное сопротивление. Так в фильтре RC конденсатор не пропустит постоянную составляющую и таким образом отделит ее от переменной. Фильтр RL рассчитывают так, чтобы для переменной составляющей xL было намного больше R. Постоянная составляющая по катушке проходит почти беспрепятственно. Своеобразным фильтром является трансформатор — постоянная составляющая не наводит э.д.с. в его вторичной обмотке.15.
Фильтром является также колебательный контур — цепь, состоящая из конденсатора и катушки (15, а). Оба эти элемента являются накопителями энергии: в конденсаторе концентрируется электрическое поле, в катушке — магнитное. В процессе обмена энергией между накопителями (L и С) в контуре протекает переменный ток определенной частоты.Чем больше L
и С, тем медленнее происходит процесс обмена, тем ниже частота f0. Все это напоминает уже знакомые нам механические колебания струны. Подобно струне, контур резонирует на колебания, частота fрез которых равна его собственной f0 (15, д). Благодаря этому с помощью колебательных контуров можно «вылавливать» отдельные синусоидальные составляющие (15, в, г) из электрического тока сложной формы (15, б).16.
Весьма распространенный процесс — выпрямление переменного тока начинается с превращения переменного тока в пульсирующий. Это можно сделать с помощью электрического вентиля — устройств, которое пропускает ток только в одну сторону (16, а, б).