В некоторых схемах (например, рис. 62) вы увидите не совсем обычную цепь отрицательной обратной связи в каскаде, получившем название ультралинейного усилителя (рис. 39,
рис. 39
,У многих из вас мог возникнуть вопрос: зачем на схеме (рис. 39,
Выигрыш, который приносит нам отрицательная обратная связь, не достается даром. За него приходится платить дополнительным усилением, а это не всегда возможно и не всегда выгодно. Стоит ли, например, вводить очень глубокую обратную связь в усилитель, который по заданным условиям должен быть простым и дешевым и от которого в то же время не требуется очень высоких качественных показателей? Здесь, по-видимому, глубину обратной связи целесообразно увеличивать до тех пор, пока это не потребует дополнительных затрат, в частности дополнительного каскада усиления.
Но даже в тех случаях, когда мы не ограничены средствами и когда главная наша задача — улучшить качественные показатели усилителя, мы не можем до бесконечности усиливать отрицательную обратную связь. Одно из главных ограничений связано с тем, что на некоторых частотах отрицательная обратная связь может превратиться в положительную, которая, как известно, все делает наоборот — не улучшает, а ухудшает качественные показатели усилителя. Более того, при определенных условиях положительная обратная связь может превратить усилитель в генератор (самовозбуждение усилителя), и он сам по себе, не получая никакого входного сигнала, будет генерировать переменное напряжение — попросту говоря, будет выть и свистеть. Превращение отрицательной обратной связи в положительную может произойти тогда, когда какие-то элементы создадут дополнительный сдвиг фаз на 180°. Такими элементами могут оказаться RС-цепочки, которые в усилителе встречаются буквально на каждом шагу.
Попробуем детально изучить поведение RС-цепочки, по которой проходит переменный ток (рис. 41, рис. 42).
Рис. 41.
Прежде всего отметим, что в любой цепи переменное напряжение
рис. 42
,Это может показаться никому не нужным заявлением, чем-нибудь вроде «Волга впадает в Каспийское море»… Действительно, для любого момента времени, для любых мгновенных значений должен выполняться закон Ома, а значит, ток
рис. 42
,Существует очень наглядный способ изображения сдвига фаз — векторная диаграмма (рис. 41). Вспомним, что мы договорились весь период делить на 360 условных единиц времени и именно такую единицу назвали градусом. Векторная диаграмма — это рисунок, где ток и напряжение показаны в виде определенным образом расположенных линий — векторов. Линии образуют угол, который соответствует сдвигу фаз между током и напряжением. Это очень удобно, так как каждому градусу сдвига фаз (единица измерения времени) соответствует градус (угловая единица) угла между векторами.